利用神经网络反演土壤有机质已有CSV文件共40列190行,第一列为有机质数据,使用训练集测试集验证集的方法去优化并验证神经网络,并保存模型pytorch代码
时间: 2024-03-01 15:52:08 浏览: 73
基于宽波段与窄波段综合光谱指数的土壤有机质遥感反演
以下是一个使用PyTorch实现神经网络反演土壤有机质的示例代码,其中使用了训练集、验证集和测试集三个数据集。
首先,需要导入必要的库和加载数据集:
```python
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from sklearn.model_selection import train_test_split
# 加载数据集
data = pd.read_csv('data.csv')
X = data.iloc[:, 1:].values
y = data.iloc[:, 0].values
# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)
# 转换为张量
X_train = torch.FloatTensor(X_train)
y_train = torch.FloatTensor(y_train)
X_val = torch.FloatTensor(X_val)
y_val = torch.FloatTensor(y_val)
X_test = torch.FloatTensor(X_test)
y_test = torch.FloatTensor(y_test)
```
接下来,定义一个简单的神经网络模型:
```python
class Net(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Net, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
```
然后,定义训练和验证函数:
```python
def train(model, optimizer, criterion, X_train, y_train):
model.train()
optimizer.zero_grad()
output = model(X_train)
loss = criterion(output, y_train)
loss.backward()
optimizer.step()
return loss.item()
def validate(model, optimizer, criterion, X_val, y_val):
model.eval()
with torch.no_grad():
output = model(X_val)
loss = criterion(output, y_val)
return loss.item()
```
最后,训练模型并在测试集上测试:
```python
# 定义模型
net = Net(input_size=X_train.shape[1], hidden_size=10, output_size=1)
# 定义优化器和损失函数
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
criterion = nn.MSELoss()
# 训练模型
epochs = 100
train_losses = []
val_losses = []
for epoch in range(epochs):
train_loss = train(net, optimizer, criterion, X_train, y_train)
val_loss = validate(net, optimizer, criterion, X_val, y_val)
train_losses.append(train_loss)
val_losses.append(val_loss)
print(f'Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}')
# 在测试集上测试
with torch.no_grad():
net.eval()
y_pred = net(X_test)
test_loss = criterion(y_pred, y_test)
print(f'Test Loss: {test_loss:.4f}')
# 保存模型
torch.save(net.state_dict(), 'model.pth')
```
这样,就完成了神经网络反演土壤有机质的示例代码。需要注意的是,这只是一个基础的示例代码,具体的模型和参数需要根据实际问题进行调整和优化。
阅读全文