使用tensorflow 实现vgg16
时间: 2023-12-05 19:04:07 浏览: 88
tensorflow-vgg16
以下是使用TensorFlow实现VGG16的代码示例:
```python
import tensorflow as tf
def vgg16(input):
# 定义卷积层函数
def conv_layer(input, filters, kernel_size, strides, padding):
return tf.layers.conv2d(inputs=input, filters=filters, kernel_size=kernel_size,
strides=strides, padding=padding, activation=tf.nn.relu)
# 定义池化层函数
def pool_layer(input):
return tf.layers.max_pooling2d(inputs=input, pool_size=2, strides=2)
# 定义VGG16网络结构
conv1_1 = conv_layer(input, 64, 3, 1, 'same')
conv1_2 = conv_layer(conv1_1, 64, 3, 1, 'same')
pool1 = pool_layer(conv1_2)
conv2_1 = conv_layer(pool1, 128, 3, 1, 'same')
conv2_2 = conv_layer(conv2_1, 128, 3, 1, 'same')
pool2 = pool_layer(conv2_2)
conv3_1 = conv_layer(pool2, 256, 3, 1, 'same')
conv3_2 = conv_layer(conv3_1, 256, 3, 1, 'same')
conv3_3 = conv_layer(conv3_2, 256, 3, 1, 'same')
pool3 = pool_layer(conv3_3)
conv4_1 = conv_layer(pool3, 512, 3, 1, 'same')
conv4_2 = conv_layer(conv4_1, 512, 3, 1, 'same')
conv4_3 = conv_layer(conv4_2, 512, 3, 1, 'same')
pool4 = pool_layer(conv4_3)
conv5_1 = conv_layer(pool4, 512, 3, 1, 'same')
conv5_2 = conv_layer(conv5_1, 512, 3, 1, 'same')
conv5_3 = conv_layer(conv5_2, 512, 3, 1, 'same')
pool5 = pool_layer(conv5_3)
# 将池化层输出的特征图展开成一维向量
flatten = tf.layers.flatten(pool5)
# 定义全连接层
fc6 = tf.layers.dense(inputs=flatten, units=4096, activation=tf.nn.relu)
fc7 = tf.layers.dense(inputs=fc6, units=4096, activation=tf.nn.relu)
fc8 = tf.layers.dense(inputs=fc7, units=1000, activation=None)
return fc8
```
在上述代码中,我们首先定义了`conv_layer`和`pool_layer`函数来创建卷积层和池化层。然后,我们按照VGG16的网络结构定义了卷积层、池化层和全连接层,并将它们连接在一起形成完整的VGG16网络。最后,我们返回最后一个全连接层的输出。
注意,这里的代码只是一个简单的实现示例,具体实现可能会根据实际需求进行修改和优化。
阅读全文