请你再加入训练的代码和网格搜索的代码
时间: 2024-02-22 11:59:26 浏览: 129
练习的代码
好的,以下是加入训练的代码:
```python
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
import torch
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
# 加载数据集
train_dataset = torch.load('train_dataset.pth')
valid_dataset = torch.load('valid_dataset.pth')
# 训练参数
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=2,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=500,
evaluation_strategy='steps',
eval_steps=1000,
save_total_limit=3,
save_steps=1000,
learning_rate=2e-5,
)
# 训练模型
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
data_collator=lambda data: {'input_ids': torch.stack([f[0] for f in data]),
'attention_mask': torch.stack([f[1] for f in data]),
'labels': torch.stack([f[0] for f in data])}
)
trainer.train()
```
以下是网格搜索的代码:
```python
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
from sklearn.model_selection import ParameterGrid
import torch
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# 加载数据集
train_dataset = torch.load('train_dataset.pth')
valid_dataset = torch.load('valid_dataset.pth')
# 训练参数
params = {'learning_rate': [2e-5, 3e-5],
'num_train_epochs': [2, 3],
'per_device_train_batch_size': [8, 16],
'warmup_steps': [500, 1000]}
# 网格搜索
for param in ParameterGrid(params):
print(param)
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=param['num_train_epochs'],
per_device_train_batch_size=param['per_device_train_batch_size'],
per_device_eval_batch_size=param['per_device_train_batch_size'],
warmup_steps=param['warmup_steps'],
weight_decay=0.01,
logging_dir='./logs',
logging_steps=500,
evaluation_strategy='steps',
eval_steps=1000,
save_total_limit=3,
save_steps=1000,
learning_rate=param['learning_rate'],
)
model = GPT2LMHeadModel.from_pretrained('gpt2')
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
data_collator=lambda data: {'input_ids': torch.stack([f[0] for f in data]),
'attention_mask': torch.stack([f[1] for f in data]),
'labels': torch.stack([f[0] for f in data])}
)
trainer.train()
```
阅读全文