close all; clear all; clc; load ('6mm_matlab.mat') % 相机标定基本参数 M = cameraParams.IntrinsicMatrix'; R = cameraParams.RotationMatrices(:,:,1); T = cameraParams.TranslationVectors(1,:)'; UV = cameraParams.ReprojectedPoints(:,:,1); % 将标定板角点像素坐标转换成齐次 for i = 1:size(UV,1) UV_H(i,:) = [UV(i,:),1]; end % 将像素坐标系转换到像素坐标系:参考https://blog.csdn.net/qq_43222384/article/details/101516807 leftMatrix = inv(R)*inv(M)*UV_H'; rightMatrix = inv(R)*T; rightMatrix_H = repmat(rightMatrix(3),[1,size(UV,1)]); temp_s = rightMatrix_H./leftMatrix(3,:); N_rightMatrix = repmat(rightMatrix,1,size(UV,1)); CB_World = temp_s.*leftMatrix - N_rightMatrix; WorldPoint = cameraParams.WorldPoints';
时间: 2023-12-06 17:40:05 浏览: 108
这段代码是用于相机标定后计算标定板上角点的世界坐标的。具体来说,它假设已经知道了相机的内参矩阵、旋转矩阵和平移向量,以及标定板上角点在图像中的像素坐标,然后通过一系列的矩阵运算,计算出标定板上角点的世界坐标。
具体来说,代码中首先将相机内参矩阵和旋转矩阵求逆,并将像素坐标系下的角点像素坐标转换成齐次坐标。然后通过矩阵运算,将像素坐标系下的角点转换到相机坐标系下的坐标,并进一步转换到世界坐标系下的坐标。最后,将计算出的世界坐标保存在变量"WorldPoint"中。
相关问题
close all; clear all; clc;load ('6mm_matlab.mat') % 相机标定基本参数 M = cameraParams.IntrinsicMatrix'; R = cameraParams.RotationMatrices(:,:,1); T = cameraParams.TranslationVectors(1,:)'; UV = cameraParams.ReprojectedPoints(:,:,1); v = VideoReader('shoujilux7.mp4'); while hasFrame(v) frame = readFrame(v); gray_frame = rgb2gray(frame); % gamma校正 gamma = 1.5; gamma_corrected = imadjust(gray_frame,[],[],gamma); % 高斯滤波 sigma = 1; hsize = ceil(6sigma); h = fspecial('gaussian', hsize, sigma); filtered_frame = imfilter(gamma_corrected, h); % Otsu阈值分割 T = graythresh(filtered_frame); [m, n] = size(filtered_frame); E = bwareaopen(im2bw(filtered_frame, T), round(mn/1000), 8); % Canny边缘检测 canny_edge = edge(E, 'canny'); % 形态学膨胀 se = strel('disk', 2); dilated_edge = imdilate(canny_edge, se); % 连通域分析 stats = regionprops('table', dilated_edge, 'Area', 'Centroid'); % 筛选面积最大的连通区域 [~, idx] = max(stats.Area); centroid = stats.Centroid(idx, :); % 显示帧和质心 imshow(dilated_edge); hold on; plot(centroid(1), centroid(2), 'r+', 'MarkerSize', 10); hold off; 像素坐标转换为实际坐标显示
假设相机的焦距为f,像素坐标为(u,v),实际坐标为(x,y,z),则有以下公式:
x = (u - cx) * z / f
y = (v - cy) * z / f
其中cx和cy是图像中心点的像素坐标,z是实际坐标的深度。
在代码中,可以根据质心的像素坐标和相机内参计算出质心的实际坐标。代码如下:
% 计算质心的实际坐标
z = depth(centroid(2), centroid(1)); % 从深度图中获取深度值
x = (centroid(1) - M(1,3)) * z / M(1,1);
y = (centroid(2) - M(2,3)) * z / M(2,2);
% 显示帧和质心
imshow(frame);
hold on;
plot(centroid(1), centroid(2), 'r+', 'MarkerSize', 10);
plot(x, y, 'bo', 'MarkerSize', 10);
hold off;
其中depth是深度图,可以通过调用Kinect或者其他深度相机的API获取。
优化以下代码 clear;close all;clc; load ev_cell.mat for i=1:length(FileNames) t=ev_cell(i).data.t; %记录时间(datatime格式) diff_t = [0;seconds(diff(t))]; %时间间隔 (前后质检的时间差,以秒为单位,第一个仅为凑数) A=ev_cell(i).data.CH_A; %充电电流 soc=ev_cell(i).data.soc; %电池SOC % 寻找 soc 下降的索引 socDecreaseIndex = find(soc(1:end-1) > soc(2:end)); a = [1;socDecreaseIndex+1]; %范围前部 b = [socDecreaseIndex;length(soc)]; %范围后部 C_a=[]; for j=1:length(a) C_a(j)=-(A(a(j):b(j)))'*diff_t(a(j):b(j))/((soc(b(j))-soc(a(j)))*3600); end C{i}=C_a; end
下面是对给定代码进行优化的版本:
```matlab
clear;
close all;
clc;
load ev_cell.mat
C = cell(length(FileNames), 1);
for i = 1:length(FileNames)
data = ev_cell(i).data; % 提取数据以减少重复访问
t = data.t; % 记录时间(datetime格式)
diff_t = seconds(diff(t)); % 时间间隔 (前后质检的时间差,以秒为单位)
A = data.CH_A; % 充电电流
soc = data.soc; % 电池SOC
% 寻找 soc 下降的索引
socDecreaseIndex = find(soc(1:end-1) > soc(2:end));
a = [1; socDecreaseIndex+1]; % 范围前部
b = [socDecreaseIndex; length(soc)]; % 范围后部
C_a = zeros(length(a), 1); % 预分配C_a的大小
for j = 1:length(a)
C_a(j) = -sum(A(a(j):b(j)) .* diff_t(a(j):b(j))) / ((soc(b(j))-soc(a(j))) * 3600);
end
C{i} = C_a;
end
```
这个优化版本在以下方面进行了改进:
1. 减少了对ev_cell(i).data的多次重复访问,将其提取为一个临时变量。
2. 使用预分配来初始化C_a,避免在每次循环中动态分配内存。
3. 使用sum函数替代了循环中的累加操作,提高了计算效率。
4. 将注释添加到代码中以提高可读性。
通过这些优化,代码的性能和效率应该有所提升。
阅读全文
相关推荐















