应用多元统计分析水泥实验代码python
时间: 2023-07-09 10:54:29 浏览: 113
以下是一个简单的水泥实验多元统计分析的Python代码示例:
```python
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
# 读取数据集
data = pd.read_csv('cement.csv')
# 数据预处理:标准化
X = StandardScaler().fit_transform(data)
# PCA降维
pca = PCA(n_components=2)
pca.fit(X)
X_pca = pca.transform(X)
# K-Means聚类
kmeans = KMeans(n_clusters=3, random_state=0).fit(X_pca)
# 聚类结果评估
score = silhouette_score(X_pca, kmeans.labels_)
print('Silhouette Score: %.3f' % score)
# 可视化
import matplotlib.pyplot as plt
colors = ['r', 'g', 'b']
for i in range(3):
plt.scatter(X_pca[kmeans.labels_==i, 0], X_pca[kmeans.labels_==i, 1], c=colors[i])
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()
```
其中,数据集`cement.csv`中包含了不同水泥实验的多个指标,代码中首先对数据进行标准化处理,然后使用PCA进行降维,将数据降到二维,最后使用K-Means进行聚类,将实验归为三类,并计算Silhouette Score评估聚类效果。最后使用matplotlib可视化聚类结果。
阅读全文
相关推荐
![html](https://img-home.csdnimg.cn/images/20241231044918.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![gz](https://img-home.csdnimg.cn/images/20210720083447.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![py](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)