n个任务,k个可以并行工作的机器,完成任务i的时间是ti,求最佳调度时间

时间: 2024-03-15 09:43:19 浏览: 29
这个问题可以用贪心算法来解决。具体步骤如下: 1. 将所有任务按照完成时间从小到大排序,完成时间越小的任务先执行。 2. 初始化一个长度为k的列表,用来存放每台机器完成任务的时间。将列表中的元素全部初始化为0。 3. 依次将每个任务分配给完成时间最早的机器,即将该任务分配给列表中时间最小的机器,并更新该机器的完成时间。 4. 重复步骤3,直到所有任务都被分配完毕。 最终的最佳调度时间为所有机器完成时间的最大值。 这个算法的时间复杂度为O(nlogn),其中n为任务的数量,因为需要对任务进行排序。空间复杂度为O(k),其中k为机器的数量,即需要一个列表来存放每台机器的完成时间。
相关问题

假设有 n 个任务由 k 个可并行工作的机器来完成。完成任务 i 需要时间为ti ,设计完成这 n 个任务的最佳调度算法,使得完成全部任务的时间最早。

题意:有n个任务由k台可并行工作的机器来完成。完成任务i需要时间ti,设计完成这n个任务的最佳调度算法,使得完成全部任务的时间最早。 回答:该题目属于传统的作业调度问题,可以使用贪心算法求解。具体做法为,将每个任务按照完成时间从小到大排序,然后依次分配到可用的机器中。每次选择最早空闲的机器,将当前任务分配给它。这种做法的正确性可以通过反证法证明。因此,使用这种方法可以得到所有任务完成所需的最短时间。

最佳调度问题:假设有n个任务由k个可并行工作的机器完成。完成任务i需要的时间为ti,i=1~n。试设计一个优先队列式分支限界法,计算完成这n个任务的最佳调度,使得完成全部任务的时间最早。例如,7个任务的完成时间分别为2、14、4、16、6、5、3,交给3个机器完成,则最早完成时间为17。

最佳调度问题可以使用优先队列式分支限界法解决,具体步骤如下: 1.将n个任务按照完成时间从大到小排序,建立一个优先队列。 2.初始化当前最小完成时间min_time为0,当前调度方案schedule为一个长度为n的空列表。 3.从优先队列中取出一个任务,将其分配给当前完成时间最早的机器,更新该机器的完成时间。将该任务加入到schedule列表中。 4.计算当前完成时间,如果大于等于min_time,则剪枝,回溯到上一步。否则,如果schedule列表已经包含了所有任务,则更新min_time为当前完成时间,记录当前调度方案。 5.对于每个未分配的任务,在当前机器完成时间最早的情况下计算该任务的完成时间,将该任务加入到优先队列中。 6.重复步骤3到5,直到优先队列为空。 7.返回记录的最优调度方案和完成时间。 下面是一个Python实现的例子: ```python import heapq def best_schedule(n, t, k): # 将任务按完成时间从大到小排序 tasks = sorted(range(n), key=lambda i: -t[i]) # 初始化优先队列和当前完成时间 q = [(0, [False] * n, [None] * n)] # 初始化最小完成时间和最优调度方案 min_time, best_schedule = float('inf'), None while q: # 取出当前完成时间最小的调度方案 time, used, schedule = heapq.heappop(q) if time >= min_time: # 剪枝,回溯到上一步 continue if all(used): # 更新最小完成时间和最优调度方案 min_time, best_schedule = time, schedule continue # 将未分配的任务加入优先队列 for i in range(n): if not used[i]: # 计算任务i的完成时间 m = min(range(k), key=lambda j: time + t[i] if schedule[j] is None else schedule[j]) new_time = time + t[i] if schedule[m] is None else max(time + t[i], schedule[m]) # 将任务i分配给机器m new_used = used.copy() new_used[i] = True new_schedule = schedule.copy() new_schedule[m] = new_time # 将新的调度方案加入优先队列 heapq.heappush(q, (new_time, new_used, new_schedule)) return min_time, best_schedule # 测试 n = 7 t = [2, 14, 4, 16, 6, 5, 3] k = 3 min_time, best_schedule = best_schedule(n, t, k) print(f"最早完成时间为{min_time},最优调度方案为{best_schedule}") ``` 在上面的例子中,我们将任务按完成时间从大到小排序,并使用一个优先队列来存储所有可能的调度方案。每次从队列中取出当前完成时间最小的调度方案,将一个未分配的任务分配给当前完成时间最早的机器,并将新的调度方案加入到优先队列中。如果当前完成时间已经大于等于最小完成时间,则剪枝,回溯到上一步。如果所有任务都已经分配完成,则更新最小完成时间和最优调度方案。最终返回最早完成时间和最优调度方案。

相关推荐

最新推荐

recommend-type

Spark调优多线程并行处理任务实现方式

主要介绍了Spark调优多线程并行处理任务实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

人工蜂群算法在并行测试任务调度中的应用

人工蜂群算法是群智能算法,可以解决一些组合优化问题,本文将它应用在并行测试的任务调度中,并通过实验验证该方法有效的提高了计算速度
recommend-type

数据预处理之基于统计的异常值检测

matlab+数据预处理+统计+异常值+检测+适用维度较小的数据 基于统计的异常值检测是一种利用统计学原理和技术来识别数据集中异常值或离群点的方法。这种方法通过考察数据集的统计特性来发现与其他样本显著不同的观测值。我们可以利用几种常见的方法,包括3σ(sigma)准则、Z分数(Z-score)和Boxplot(箱线图)。
recommend-type

2021-2022中国中东欧智慧教育学术会议报告集-25页(1).pdf

2021-2022中国中东欧智慧教育学术会议报告集-25页(1)
recommend-type

架构师技术分享 支付宝高可用系统架构 共46页.pptx

支付宝高可用系统架构 支付宝高可用系统架构是支付宝核心支付平台的架构设计和系统升级的结果,旨在提供高可用、可伸缩、高性能的支付服务。该架构解决方案基于互联网与云计算技术,涵盖基础资源伸缩性、组件扩展性、系统平台稳定性、可伸缩、高可用的分布式事务处理与服务计算能力、弹性资源分配与访问管控、海量数据处理与计算能力、“适时”的数据处理与流转能力等多个方面。 1. 可伸缩、高可用的分布式事务处理与服务计算能力 支付宝系统架构设计了分布式事务处理与服务计算能力,能够处理高并发交易请求,确保系统的高可用性和高性能。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 2. 弹性资源分配与访问管控 支付宝系统架构设计了弹性资源分配与访问管控机制,能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。该机制还能够提供强大的访问管控功能,保护系统的安全和稳定性。 3. 海量数据处理与计算能力 支付宝系统架构设计了海量数据处理与计算能力,能够处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 4. “适时”的数据处理与流转能力 支付宝系统架构设计了“适时”的数据处理与流转能力,能够实时地处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 5. 安全、易用的开放支付应用开发平台 支付宝系统架构设计了安全、易用的开放支付应用开发平台,能够提供强大的支付应用开发能力,满足业务的快速增长需求。该平台基于互联网与云计算技术,能够弹性地扩展计算资源,确保系统的高可用性和高性能。 6. 架构设计理念 支付宝系统架构设计基于以下几点理念: * 可伸缩性:系统能够根据业务需求弹性地扩展计算资源,满足业务的快速增长需求。 * 高可用性:系统能够提供高可用性的支付服务,确保业务的连续性和稳定性。 * 弹性资源分配:系统能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。 * 安全性:系统能够提供强大的安全功能,保护系统的安全和稳定性。 7. 系统架构设计 支付宝系统架构设计了核心数据库集群、应用系统集群、IDC数据库交易系统账户系统V1LB、交易数据库账户数据库业务一致性等多个组件。这些组件能够提供高可用性的支付服务,确保业务的连续性和稳定性。 8. 业务活动管理器 支付宝系统架构设计了业务活动管理器,能够控制业务活动的一致性,确保业务的连续性和稳定性。该管理器能够登记业务活动中的操作,并在业务活动提交时确认所有的TCC型操作的confirm操作,在业务活动取消时调用所有TCC型操作的cancel操作。 9. 系统故障容忍度高 支付宝系统架构设计了高可用性的系统故障容忍度,能够在系统故障时快速恢复,确保业务的连续性和稳定性。该系统能够提供强大的故障容忍度,确保系统的安全和稳定性。 10. 系统性能指标 支付宝系统架构设计的性能指标包括: * 系统可用率:99.992% * 交易处理能力:1.5万/秒 * 支付处理能力:8000/秒(支付宝账户)、2400/秒(银行) * 系统处理能力:处理每天1.5亿+支付处理能力 支付宝高可用系统架构设计了一个高可用、高性能、可伸缩的支付系统,能够满足业务的快速增长需求,确保业务的连续性和稳定性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果

![Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果](https://file.51pptmoban.com/d/file/2018/10/25/7af02d99ef5aa8531366d5df41bec284.jpg) # 1. Matlab画图基础 Matlab是一款强大的科学计算和数据可视化软件,它提供了一系列用于创建和自定义图形的函数。本章将介绍Matlab画图的基础知识,包括创建画布、绘制线型以及设置基本属性。 ### 1.1 创建画布 在Matlab中创建画布可以使用`figure`函数。该函数创建一个新的图形窗口,并返回一个图形句柄。图形句柄用于对图形进
recommend-type

基于R软件一个实际例子,实现空间回归模型以及包括检验和模型选择(数据集不要加州的,附代码和详细步骤,以及数据)

本文将使用R软件和Boston房价数据集来实现空间回归模型,并进行检验和模型选择。 数据集介绍: Boston房价数据集是一个观测500个社区的房屋价格和其他16个变量的数据集。每个社区的数据包含了包括犯罪率、房产税率、学生-老师比例等特征,以及该社区的房价中位数。该数据集可用于探索房价与其他变量之间的关系,以及预测一个新社区的房价中位数。 数据集下载链接:https://archive.ics.uci.edu/ml/datasets/Housing 1. 导入数据集和必要的包 ```r library(spdep) # 空间依赖性包 library(ggplot2) # 可
recommend-type

WM9713 数据手册

WM9713 数据手册 WM9713 是一款高度集成的输入/输出设备,旨在为移动计算和通信应用提供支持。下面是 WM9713 的详细知识点: 1. 设备架构:WM9713 采用双 CODEC 运算架构,支持 Hi-Fi 立体声编解码功能通过 AC 链接口,同时还支持语音编解码功能通过 PCM 类型的同步串行端口(SSP)。 2. 音频功能:WM9713 提供了一个第三个 AUX DAC,可以用于生成监督音、铃声等不同采样率的音频信号,独立于主编解码器。 3. 触摸面板接口:WM9713 可以直接连接到 4 线或 5 线触摸面板,减少系统中的总组件数量。 4. 音频连接:WM9713 支持多种音频连接方式,包括立体声麦克风、立体声耳机和立体声扬声器。且可以使用无电容连接到耳机、扬声器和耳机,减少成本和 PCB 面积。 5. 模拟输入/输出:WM9713 提供了多个模拟输入和输出引脚,用于无缝集成与模拟连接的无线通信设备。 6. 设备控制:所有设备功能都可以通过寄存器访问来控制,实现了灵活的设备管理和配置。 7. 功率管理:WM9713 采用低功率设计,降低系统的功率消耗,提高系统的可靠性和续航能力。 8. 工业应用:WM9713 广泛应用于移动计算、通信、消费电子等领域,满足不同行业的需求和应用场景。 9. 技术参数:WM9713 的技术参数包括工作温度、供电电压、时钟频率、数据传输速率等,满足不同应用场景的需求。 10. 应用场景:WM9713 可以应用于智能手机、平板电脑、笔记本电脑、智能家居设备等移动计算和通信产品,满足不同行业的需求和应用场景。 WM9713 是一款功能强大、灵活性高的输入/输出设备,广泛应用于移动计算和通信领域,为不同行业的应用场景提供了可靠的解决方案。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依