SUMO-idm跟驰模型代码
时间: 2023-10-11 15:13:35 浏览: 829
SUMO-idm跟驰模型是一种基于间距-速度控制的车辆跟驰模型,其代码实现如下:
```python
class IDMVehicle(AVLaneVehicle):
"""
A vehicle using the IDM acceleration model.
This vehicle implements the IDM car-following model. Additionally, it may
use the MOBIL lane-changing model to change lanes.
Parameters
----------
* see parents *
idm_params : dict, optional
Dictionary with parameters for the IDM model. The default value is
`{'a': 1.3, 'b': 2.0, 'v0': 30, 'T': 1.5, 's0': 2, 'delta': 4}`.
For a description of the parameters, please refer to the `IDM model
wikipedia page <https://en.wikipedia.org/wiki/Intelligent_driver_model>`_.
Notes
-----
The MOBIL model is only used if the `lane_change_controller` is set to a
`MobilLaneChanger` instance.
Examples
--------
>>> from flow.controllers import IDMController, ContinuousRouter
>>> from flow.core.params import VehicleParams, SumoParams
>>>
>>> sumo_params = SumoParams(sim_step=0.1, render=False)
>>> vehicle_params = VehicleParams()
>>> vehicle_params.add(
... "human",
... acceleration_controller=(IDMController, {}),
... routing_controller=(ContinuousRouter, {}),
... num_vehicles=20)
>>>
>>> # create a network and a scenario
>>> from flow.networks import HighwayNetwork
>>> from flow.scenarios import Scenario
>>> from flow.core.params import NetParams
>>> from flow.core.params import InitialConfig
>>> from flow.scenarios import HighwayScenario
>>> from flow.envs.ring.accel import IDMVehicle
>>>
>>> network = HighwayNetwork(
... name='highway',
... vehicles=vehicle_params,
... net_params=NetParams(),
... initial_config=InitialConfig(
... spacing="uniform",
... lanes_distribution=float("inf"),
... lanes_count=2
... )
... )
>>> scenario = HighwayScenario(
... name='highway',
... generator_class=HighwayGenerator,
... vehicles=vehicle_params,
... net_params=NetParams(),
... initial_config=InitialConfig(
... spacing="uniform",
... lanes_distribution=float("inf"),
... lanes_count=2
... )
... )
>>>
>>> # create the environment
>>> from flow.envs import HighwayPOEnv
>>> env = HighwayPOEnv(
... env_params=EnvParams(),
... sim_params=sumo_params,
... scenario=scenario,
... simulator='traci'
... )
>>>
>>> # run the simulation
>>> obs = env.reset()
>>> for i in range(100):
... action = [1, 0]
... obs, rewards, dones, info = env.step(action)
... if i % 10 == 0:
... env.render()
>>> env.close()
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.idm_params = kwargs.get(
"idm_params", {'a': 1.3, 'b': 2.0, 'v0': 30, 'T': 1.5, 's0': 2,
'delta': 4})
def get_accel(self, env):
"""See parent class."""
leader = self.get_leader(env)
if leader is None:
return self.idm_params["a"]
v = env.k.vehicle.get_speed(self.id)
v_leader = env.k.vehicle.get_speed(leader)
dv = max(0, v_leader - v)
s = env.k.vehicle.get_headway(self.id)
s_star = self.idm_params["s0"] + max(
0, v * self.idm_params["T"] + v * dv /
(2 * np.sqrt(self.idm_params["a"] * self.idm_params["b"])))
return self.idm_params["a"] * (
1 - np.power(v / self.idm_params["v0"], self.idm_params["delta"])
- np.power(s_star / s, 2))
```
其中,`get_accel`方法是计算车辆加速度的主要函数。在该函数中,根据跟驰模型的公式计算出车辆的期望车头间距`s_star`,然后根据该期望车头间距计算车辆的加速度。具体来说,该模型主要包含以下几个参数:
- `a`:车辆加速度的最大值;
- `b`:车辆减速度的最大值;
- `v0`:车辆的期望速度;
- `T`:期望的时间间隔,即车辆跟前车保持的时间间隔;
- `s0`:车辆的最小车头间距;
- `delta`:车辆速度对加速度的影响因子。
通过调整这些参数,可以对车辆的行为进行调整。
阅读全文