double DQN代码实现
时间: 2023-11-20 10:00:23 浏览: 95
感谢您的提问。以下是 Double DQN 代码的实现:
首先,我们先定义一个 Double DQN 的类:
```python
import tensorflow as tf
from tensorflow import keras
class DoubleDQN:
def __init__(self, input_shape, output_shape, learning_rate=0.001, discount_factor=0.99):
self.input_shape = input_shape
self.output_shape = output_shape
self.learning_rate = learning_rate
self.discount_factor = discount_factor
self.main_q_network = self.build_q_network()
self.target_q_network = self.build_q_network()
self.optimizer = tf.keras.optimizers.Adam(lr=self.learning_rate)
def build_q_network(self):
inputs = keras.layers.Input(shape=self.input_shape)
x = keras.layers.Dense(64, activation='relu')(inputs)
x = keras.layers.Dense(64, activation='relu')(x)
q_values = keras.layers.Dense(self.output_shape, activation='linear')(x)
model = keras.Model(inputs=inputs, outputs=q_values)
return model
```
接下来,我们定义 Double DQN 的训练过程:
```python
import numpy as np
class DoubleDQN:
...
def train(self, states, actions, rewards, next_states, dones, batch_size=32):
indexes = np.random.randint(0, len(states), size=batch_size)
states_batch = states[indexes]
action_batch = actions[indexes]
reward_batch = rewards[indexes]
next_states_batch = next_states[indexes]
done_batch = dones[indexes]
q_values_next = self.main_q_network.predict(next_states_batch)
best_actions = np.argmax(q_values_next, axis=-1)
q_values_next_target = self.target_q_network.predict(next_states_batch)
target_values = q_values_next_target[np.arange(batch_size), best_actions]
target_values = reward_batch + (1-done_batch) * self.discount_factor * target_values
with tf.GradientTape() as tape:
q_values = self.main_q_network(states_batch)
q_values_actions = tf.reduce_sum(tf.one_hot(action_batch, self.output_shape) * q_values, axis=-1)
loss = tf.reduce_mean(tf.square(q_values_actions - target_values))
grads = tape.gradient(loss, self.main_q_network.trainable_variables)
self.optimizer.apply_gradients(zip(grads, self.main_q_network.trainable_variables))
return loss.numpy()
```
最后,我们还需要一个更新 target network 的函数:
```python
class DoubleDQN:
...
def update_target_network(self):
self.target_q_network.set_weights(self.main_q_network.get_weights())
```
这样,我们就完成了 Double DQN 的实现。当然,在实际的应用中可能还需要做一些细节上的调整,例如 epsilon-greedy 策略等等。
阅读全文