基于DeepLearning4j框架, 根据已有的三位坐标点组成的路径训练Deep Q-Network (DQN)模型, 然后给出起止点的坐标,自动生成路径点坐标, 给出实现代码
时间: 2024-03-27 14:40:49 浏览: 67
好的,以下是一个使用 DeepLearning4j 框架训练 DQN 模型的示例代码:
```java
import org.deeplearning4j.rl4j.learning.sync.qlearning.discrete.QLearning;
import org.deeplearning4j.rl4j.learning.sync.qlearning.discrete.QLearningDiscreteDense;
import org.deeplearning4j.rl4j.network.dqn.DQN;
import org.deeplearning4j.rl4j.network.dqn.DQNFactoryStdDense;
import org.deeplearning4j.rl4j.space.DiscreteSpace;
import org.nd4j.linalg.learning.config.Adam;
public class PathPlanner {
public static void main(String[] args) {
// 定义 Q-Learning 的超参数
final int seed = 123;
final int maxStep = 100;
final int numEpisodes = 1000;
final double gamma = 0.99;
final double learningRate = 0.001;
final int updateStart = 10;
final int updateInterval = 1;
final int targetUpdateInterval = 100;
final int batchSize = 32;
// 定义动作空间和状态空间
final int numActions = 4; // 上下左右四个方向
final int[] shape = {3}; // 三个坐标点
final DiscreteSpace actionSpace = new DiscreteSpace(numActions);
final PathStateSpace stateSpace = new PathStateSpace(shape);
// 定义 DQN 网络架构
final DQNFactoryStdDense.Configuration netConf = DQNFactoryStdDense.Configuration.builder()
.l2(0.001).updater(new Adam(learningRate)).numHiddenNodes(100).build();
// 定义 DQN 模型
final DQN dqn = netConf.buildDQN(stateSpace.getObservationShape(), actionSpace.getSize());
// 定义 Q-Learning 算法
final QLearning.QLConfiguration qlConf = new QLearning.QLConfiguration(seed, maxStep, numEpisodes, gamma,
learningRate, updateStart, updateInterval, targetUpdateInterval, batchSize);
// 定义学习环境
final PathEnvironment env = new PathEnvironment();
// 训练 DQN 模型
final QLearningDiscreteDense<PathState> dql = new QLearningDiscreteDense<>(env, dqn, qlConf);
dql.train();
// 使用 DQN 模型生成路径
final PathState startState = new PathState(new double[]{0, 0, 0});
final PathState endState = new PathState(new double[]{5, 5, 5});
final PathState currentState = startState;
final double[] path = new double[9];
int pathIndex = 0;
while (!currentState.equals(endState) && pathIndex < 9) {
final int action = dqn.argmax(currentState.toArray());
final double[] nextStateArray = env.getNextStateArray(currentState.toArray(), action);
final PathState nextState = new PathState(nextStateArray);
path[pathIndex++] = nextStateArray[0];
path[pathIndex++] = nextStateArray[1];
path[pathIndex++] = nextStateArray[2];
currentState = nextState;
}
// 打印生成的路径
System.out.println("Path: ");
for (int i = 0; i < pathIndex; i += 3) {
System.out.println("(" + path[i] + ", " + path[i + 1] + ", " + path[i + 2] + ")");
}
}
}
```
需要注意的是,这只是一个简单的示例代码,您需要根据您的具体需求进行修改和优化。
阅读全文