BCL代码pytorch
时间: 2023-09-21 08:09:10 浏览: 172
这是一个简单的 PyTorch BCL(Bayesian Convolutional Layer)代码示例,用于卷积层的贝叶斯推断:
```
import torch
import torch.nn as nn
from torch.distributions.normal import Normal
class BCL(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.weight_mu = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
self.weight_rho = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
self.bias_mu = nn.Parameter(torch.randn(out_channels))
self.bias_rho = nn.Parameter(torch.randn(out_channels))
self.log_sigma_prior = nn.Parameter(torch.randn(1))
def forward(self, x):
weight_sigma = torch.log1p(torch.exp(self.weight_rho))
bias_sigma = torch.log1p(torch.exp(self.bias_rho))
weight_eps = torch.randn_like(self.weight_mu)
bias_eps = torch.randn_like(self.bias_mu)
weight = self.weight_mu + weight_sigma * weight_eps
bias = self.bias_mu + bias_sigma * bias_eps
kl_weight = self._kl_divergence(self.weight_mu, weight_sigma, self.log_sigma_prior)
kl_bias = self._kl_divergence(self.bias_mu, bias_sigma, self.log_sigma_prior)
self.kl_divergence = kl_weight + kl_bias
return nn.functional.conv2d(x, weight, bias, stride=self.stride, padding=self.padding)
def _kl_divergence(self, mu, sigma, log_sigma_prior):
prior = Normal(0, torch.exp(log_sigma_prior))
posterior = Normal(mu, torch.log1p(torch.exp(sigma)))
kl = torch.distributions.kl_divergence(posterior, prior).sum()
return kl
```
在该代码中,`BCL` 类继承了 `nn.Module` 类,它包含了一个卷积层的前向传播和 kl 散度计算的方法。在 `__init__` 方法中,我们定义了必要的参数,并初始化了权重和偏移。在前向传播中,我们首先计算权重和偏移的标准差,然后使用随机噪声计算权重和偏移,再计算 kl 散度。最后,我们使用 `nn.functional.conv2d` 方法来执行卷积操作。
这个代码示例可以用来实现基于贝叶斯推断的卷积神经网络。
阅读全文