BCL与focal loss相结合的pytorch代码
时间: 2023-11-27 09:02:58 浏览: 127
下面是使用BCL与Focal Loss相结合的PyTorch代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class BCLFocalLoss(nn.Module):
def __init__(self, alpha=0.25, gamma=2, reduction='mean'):
super(BCLFocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.reduction = reduction
def forward(self, input, target):
pt = F.softmax(input, dim=1)
pt = pt.clamp(1e-7, 1.0 - 1e-7)
alpha = torch.ones_like(pt) * self.alpha
alpha[:, 1] -= self.alpha
alpha = alpha.gather(1, target.unsqueeze(1))
loss = -alpha * (1.0 - pt) ** self.gamma * torch.log(pt)
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
```
使用方法:
```python
criterion = BCLFocalLoss(alpha=0.25, gamma=2, reduction='mean')
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
在使用时,可以设置`alpha`和`gamma`参数来调整BCL和Focal Loss的权重,`reduction`参数用于控制损失函数的求和或平均。
阅读全文