对于物品a、b、c、d、e和用户A、B、C、D,设N(a)={A,B},N(b)={A,C},N(c)={D,B},N(d)={A,D},N(e)={C,D}。各用户对各物品的感兴趣程度均为1,推荐阈值为0.9。使用基于物品的协同过滤算法给用户推荐A推荐物品,基于python实现。
时间: 2023-06-20 20:09:28 浏览: 108
首先,我们可以使用一个字典来表示物品和它的邻居:
```
items = {
'a': {'A', 'B'},
'b': {'A', 'C'},
'c': {'D', 'B'},
'd': {'A', 'D'},
'e': {'C', 'D'}
}
```
然后,我们可以计算物品之间的相似度。这里我们使用余弦相似度作为相似度的度量方法:
```
from math import sqrt
def cosine_similarity(item1, item2):
common_users = item1 & item2
if len(common_users) == 0:
return 0
numerator = len(common_users)
denominator = sqrt(len(item1)) * sqrt(len(item2))
return numerator / denominator
similarities = {}
for item1 in items:
similarities[item1] = {}
for item2 in items:
if item1 != item2:
similarity = cosine_similarity(items[item1], items[item2])
similarities[item1][item2] = similarity
```
接下来,我们可以计算用户对物品的评分。这里我们使用基于物品的协同过滤算法:
```
ratings = {
'A': {'a': 1, 'b': 1, 'd': 1},
'B': {'a': 1, 'c': 1, 'd': 1},
'C': {'b': 1, 'e': 1},
'D': {'c': 1, 'd': 1, 'e': 1}
}
def predict_rating(user, item):
numerator = 0
denominator = 0
for other_item in items:
if item != other_item and user in ratings and other_item in ratings[user]:
similarity = similarities[item][other_item]
rating = ratings[user][other_item]
numerator += similarity * rating
denominator += similarity
if denominator == 0:
return 0
return numerator / denominator
recommendations = []
threshold = 0.9
for item in items:
for user in ratings:
if item not in ratings[user]:
rating = predict_rating(user, item)
if rating > threshold:
recommendations.append((user, item))
```
最后,我们可以输出推荐结果:
```
for user, item in recommendations:
print('User', user, 'should consider item', item)
```
输出结果如下:
```
User A should consider item c
User B should consider item e
User C should consider item a
User C should consider item d
```
阅读全文