深度可分离卷积和DW,PW卷积
时间: 2024-01-14 18:13:23 浏览: 354
可分离卷积基本介绍
深度可分离卷积(Depthwise Separable Convolution)和DW-PW卷积(Depthwise Convolution followed by Pointwise Convolution)是两种常用的卷积操作,用于减少模型参数和计算量,同时保持模型的表达能力。
深度可分离卷积是将标准的卷积操作分解为两个步骤:深度卷积和逐点卷积。在深度卷积中,每个输入通道都与一个单独的滤波器卷积,生成对应数量的输出通道。然后,在逐点卷积中,使用1x1的卷积核对上一步得到的输出通道进行逐点卷积。这样的分解可以大大减少参数数量和计算量,但仍保持了较好的表达能力。
DW-PW卷积则是将深度可分离卷积进一步拆分为两个独立的卷积操作:深度卷积和逐点卷积。深度卷积与深度可分离卷积的深度卷积相同,但不进行逐点卷积。然后,逐点卷积只使用1x1的卷积核对上一步得到的输出通道进行逐点卷积。这种拆分可以更加灵活地使用逐点卷积,并且可以在后续层中引入非线性。
总的来说,深度可分离卷积和DW-PW卷积都是通过拆分卷积操作来减少模型参数和计算量,同时保持模型的表达能力。它们在轻量级模型设计中经常被使用,可以提高模型的效率和推理速度。
阅读全文