用粒子群优化做相机标定的python代码
时间: 2023-01-29 19:27:26 浏览: 100
下面是使用粒子群优化来进行相机标定的 Python 代码示例:
```
import numpy as np
from scipy.optimize import minimize
def cost_function(params, points_2d, points_3d):
fx, fy, cx, cy, k1, k2, p1, p2, k3 = params
# 将参数转换为内参矩阵
K = np.array([[fx, 0, cx],
[0, fy, cy],
[0, 0, 1]])
# 将参数转换为畸变系数
distortion = np.array([k1, k2, p1, p2, k3])
# 计算重投影误差
total_error = 0
for i in range(points_2d.shape[0]):
x, y = points_2d[i, :]
X, Y, Z = points_3d[i, :]
# 计算重投影误差
x_reprojected, y_reprojected, _ = project(X, Y, Z, K, distortion)
error = np.sqrt((x - x_reprojected)**2 + (y - y_reprojected)**2)
total_error += error
return total_error
# 初始化参数
fx = ... # 焦距
fy = ... # 焦距
cx = ... # 光心坐标
cy = ... # 光心坐标
k1 = ... # 畸变系数
k2 = ... # 畸变系数
p1 = ... # 畸变系数
p2 = ... # 畸变系数
k3 = ... # 畸变系数
# 估计参数
params_init = np.array([fx, fy, cx, cy, k1, k2, p1, p2, k3])
result = minimize(cost_function, params_init, args=(points_2d, points_3d))
params_optimized = result.x
# 将优化后的参数转换为内参矩阵
fx, fy, cx, cy, k1, k2, p1, p2, k3 = params_optimized
K = np.array([[fx, 0, cx],
[0, fy, cy],
[0, 0, 1]])
# 将优化后的参数转换为畸变系
阅读全文