lstm结合注意力机制的分类问题代码
时间: 2023-10-03 21:09:35 浏览: 81
基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)分类预测,matlab代码,2020版本及
下面是一个使用LSTM结合注意力机制进行分类的示例代码:
```python
import tensorflow as tf
class AttentionLSTMClassifier(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, lstm_units, num_classes):
super(AttentionLSTMClassifier, self).__init__()
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.lstm = tf.keras.layers.LSTM(lstm_units, return_sequences=True)
self.attention = tf.keras.layers.Attention()
self.fc = tf.keras.layers.Dense(num_classes, activation='softmax')
def call(self, inputs):
x = self.embedding(inputs)
x = self.lstm(x)
x = self.attention(x)
x = self.fc(x)
return x
```
这个模型接受一个整数序列作为输入,通过嵌入层将每个整数转换为一个向量。然后,LSTM层处理这些向量以捕获它们之间的顺序关系。接下来,注意力层计算每个时间步的注意力权重,以便更好地聚焦于对分类有用的部分。最后,全连接层将注意力向量映射到类别概率上。
下面是一个使用此模型进行训练和测试的示例代码:
```python
# 准备数据
train_data = tf.data.Dataset.from_tensor_slices((train_x, train_y)).shuffle(10000).batch(batch_size)
test_data = tf.data.Dataset.from_tensor_slices((test_x, test_y)).batch(batch_size)
# 初始化模型
model = AttentionLSTMClassifier(vocab_size, embedding_dim, lstm_units, num_classes)
# 定义优化器和损失函数
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()
# 定义评估指标
train_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy()
val_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy()
# 训练模型
for epoch in range(num_epochs):
# 训练
for step, (x_batch_train, y_batch_train) in enumerate(train_data):
with tf.GradientTape() as tape:
logits = model(x_batch_train)
loss = loss_fn(y_batch_train, logits)
grads = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
train_acc_metric.update_state(y_batch_train, logits)
# 验证
for x_batch_val, y_batch_val in test_data:
val_logits = model(x_batch_val)
val_acc_metric.update_state(y_batch_val, val_logits)
# 输出训练和验证结果
train_acc = train_acc_metric.result()
val_acc = val_acc_metric.result()
print(f"Epoch {epoch + 1}, train acc: {train_acc:.4f}, val acc: {val_acc:.4f}")
# 重置评估指标
train_acc_metric.reset_states()
val_acc_metric.reset_states()
```
在训练过程中,我们使用Adam优化器和稀疏分类交叉熵损失函数。我们还跟踪训练和验证准确度。在每个epoch结束时,我们输出这些指标,并重置评估指标以便下一个epoch。
阅读全文