UDCP算法Python
时间: 2023-11-05 18:56:37 浏览: 213
UDCP算法(Uniformly Distributed Cloning and Pruning)是一种用于神经网络模型压缩和加速的算法。它通过克隆和剪枝网络中的参数来减少模型的大小和计算量,同时保持模型性能。以下是UDCP算法的Python实现示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
def udcp(model, input_size, output_size, compression_ratio):
# 克隆原始模型
cloned_model = type(model)()
cloned_model.load_state_dict(model.state_dict())
# 计算要剪枝的参数数量
total_params = sum(p.numel() for p in cloned_model.parameters())
target_params = int(total_params * (1 - compression_ratio))
# 剪枝
params = []
for name, param in cloned_model.named_parameters():
if 'weight' in name:
params.append(param)
pruner = nn.utils.prune.L1Unstructured(amount=target_params)
pruner.prune(params)
# 替换最后一层为正确的输出大小
cloned_model.fc = nn.Linear(input_size, output_size)
return cloned_model
# 示例用法
model = MyModel() # 自定义模型
input_size = 784 # 输入大小
output_size = 10 # 输出大小
compression_ratio = 0.5 # 压缩比例
compressed_model = udcp(model, input_size, output_size, compression_ratio)
# 相关问题:
阅读全文