yolov5 conv层
时间: 2023-10-12 21:06:45 浏览: 109
YOLOv5中的conv层是指使用了Convolutional Neural Networks(卷积神经网络)进行特征提取的层级。在YOLOv5的实现中,原始的骨干网络是CSPDarknet53,但通过引用中的方式将其替换为ConvNeXt,可以获得更好的性能。具体而言,通过将YOLOv5的yaml配置文件中的前3层conv改为dcnconv,可以实现这一替换。在这个修改后的配置中,使用了DCN(Deformable Convolution Network,可变形卷积网络)代替了普通的卷积操作。这样的修改可以参考中的代码示例。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [改进目标检测算法之YOLOv5:ConvNeXt骨干网络](https://blog.csdn.net/wellcoder/article/details/130908279)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [tensorrtx 实现 yolov5 + dcnv2](https://download.csdn.net/download/haiyangyunbao813/87593174)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文