def extract_archive(archive_path, extract_path):
时间: 2024-10-20 19:18:37 浏览: 72
`extract_archive` 函数看起来像是用于解压文件的,它接受两个参数:
1. `archive_path`: 这是需要提取的归档文件的路径,比如 `.zip`, `.tar`, 或者 `.rar` 文件等。
2. `extract_path`: 这是目标目录,即解压缩后的文件将被放置的位置。
这个函数的主要作用可能是使用某种库(如 Python 的内置 `zipfile`、`tarfile` 或第三方库如 `pathlib` 和 `shutil`)来读取指定的归档文件,并将其内容解压缩到指定的目录下。例如,如果 `archive_path` 是一个 .zip 文件,函数可能会调用 `with zipfile.ZipFile(archive_path, 'r') as zip_ref:` 来打开并处理它。
```python
def extract_archive(archive_path, extract_path):
with zipfile.ZipFile(archive_path, 'r') as zip_ref:
zip_ref.extractall(extract_path)
```
相关问题
""" This code is based on the Torchvision repository, which was licensed under the BSD 3-Clause. """ import os import pickle import sys import numpy as np import torch from PIL import Image from torch.utils.data import Dataset from utils.mypath import MyPath from torchvision.datasets.utils import check_integrity, download_and_extract_archive class simclr_c10(Dataset): base_folder = 'D:/wjd/simclr_c10' filename = "simclr_c10" def __init__(self, root=MyPath.db_root_dir('wjd/simclr_c10/'), train=True, transform=None, download=False): super('wjd/simclr_c10/', self).__init__() self.data = None self.root = root self.transform = transform self.train = train # training set or test set self.classes = ['Al', 'Ag', 'Au', 'Cu', 'W', 'V', 'Ta', 'Mo'] def __getitem__(self, index): """ Args: index (int): Index Returns: dict: {'image': image, 'target': index of target class, 'meta': dict} """ img, target = self.data[index], self.targets[index] img_size = (img.shape[0], img.shape[1]) img = Image.fromarray(img) class_name = self.classes[target] if self.transform is not None: img = self.transform(img) out = {'image': img, 'target': target, 'meta': {'im_size': img_size, 'index': index, 'class_name': class_name}} return out def get_image(self, index): img = self.data[index] return img def __len__(self): return len(self.data) def extra_repr(self): return "Split: {}".format("Train" if self.train is True else "Test") return outside function,这段代码正确吗
这段代码有一些问题:
1. `super('wjd/simclr_c10/', self).__init__()` 这句话不正确,应该是 `super(simclr_c10, self).__init__()`
2. `self.targets` 在代码中没有定义,需要在 `__init__` 函数中将其定义并初始化
3. `return outside function` 这句话不应该出现在类定义中,需要将其删除
4. 另外,`check_integrity` 和 `download_and_extract_archive` 函数在代码中没有使用,可以删除
修正后的代码如下所示:
```
import os
import pickle
import sys
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from utils.mypath import MyPath
class simclr_c10(Dataset):
base_folder = 'D:/wjd/simclr_c10'
filename = "simclr_c10"
def __init__(self, root=MyPath.db_root_dir('wjd/simclr_c10/'), train=True, transform=None, download=False):
super(simclr_c10, self).__init__()
self.data = None
self.targets = []
self.root = root
self.transform = transform
self.train = train # training set or test set
self.classes = ['Al', 'Ag', 'Au', 'Cu', 'W', 'V', 'Ta', 'Mo']
self._load_data()
def _load_data(self):
if self.train:
data_file = os.path.join(self.root, self.base_folder, 'train.pkl')
else:
data_file = os.path.join(self.root, self.base_folder, 'test.pkl')
with open(data_file, 'rb') as f:
data = pickle.load(f)
self.data = data['data']
self.targets = data['targets']
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
dict: {'image': image, 'target': index of target class, 'meta': dict}
"""
img, target = self.data[index], self.targets[index]
img_size = (img.shape[0], img.shape[1])
img = Image.fromarray(img)
class_name = self.classes[target]
if self.transform is not None:
img = self.transform(img)
out = {'image': img, 'target': target, 'meta': {'im_size': img_size, 'index': index, 'class_name': class_name}}
return out
def get_image(self, index):
img = self.data[index]
return img
def __len__(self):
return len(self.data)
def extra_repr(self):
return "Split: {}".format("Train" if self.train is True else "Test")
```
def unzip_infer_data(src_path,target_path): ''' 解压预测数据集 ''' if(not os.path.isdir(target_path)): z = zipfile.ZipFile(src_path, 'r') z.extractall(path=target_path) z.close() def load_image(img_path): ''' 预测图片预处理 ''' img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) # HWC to CHW img = img/255 # 像素值归一化 return img infer_src_path = './archive_test.zip' infer_dst_path = './archive_test' unzip_infer_data(infer_src_path,infer_dst_path) para_state_dict = paddle.load("MyDNN") model = MyDNN() model.set_state_dict(para_state_dict) #加载模型参数 model.eval() #验证模式 #展示预测图片 infer_path='./archive_test/alexandrite_18.jpg' img = Image.open(infer_path) plt.imshow(img) #根据数组绘制图像 plt.show() #显示图像 #对预测图片进行预处理 infer_imgs = [] infer_imgs.append(load_image(infer_path)) infer_imgs = np.array(infer_imgs) label_dic = train_parameters['label_dict'] for i in range(len(infer_imgs)): data = infer_imgs[i] dy_x_data = np.array(data).astype('float32') dy_x_data=dy_x_data[np.newaxis,:, : ,:] img = paddle.to_tensor (dy_x_data) out = model(img) lab = np.argmax(out.numpy()) #argmax():返回最大数的索引 print("第{}个样本,被预测为:{},真实标签为:{}".format(i+1,label_dic[str(lab)],infer_path.split('/')[-1].split("_")[0])) print("结束")根据这一段代码续写一段利用这个模型进行宝石预测的GUI界面
好的,根据这段代码,我可以为您提供一个基于tkinter库的简单GUI界面,您可以在其中选择待预测的图片,并得到预测结果。以下是续写的代码:
```python
import tkinter as tk
from tkinter import filedialog
from PIL import ImageTk, Image
# 创建窗口
window = tk.Tk()
window.title("宝石预测")
window.geometry("400x400")
# 加载模型参数
para_state_dict = paddle.load("MyDNN")
model = MyDNN()
model.set_state_dict(para_state_dict)
model.eval()
# 加载标签字典
label_dict = train_parameters['label_dict']
# 创建预测函数
def predict():
# 获取待预测图片路径
img_path = filedialog.askopenfilename()
img = Image.open(img_path)
# 预处理图片
img = img.resize((224, 224), Image.BILINEAR)
img = np.array(img).astype('float32')
img = img.transpose((2, 0, 1))
img = img / 255
img = np.array([img])
# 进行预测
img = paddle.to_tensor(img)
out = model(img)
label = np.argmax(out.numpy())
result = label_dict[str(label)]
# 显示预测结果
result_label.config(text="预测结果:{}".format(result))
# 显示待预测图片
img = ImageTk.PhotoImage(Image.open(img_path).resize((200, 200)))
img_label.config(image=img)
img_label.image = img
# 创建选择图片按钮
select_button = tk.Button(window, text="选择图片", command=predict)
select_button.pack(pady=20)
# 创建待预测图片区域
img_label = tk.Label(window)
img_label.pack()
# 创建预测结果区域
result_label = tk.Label(window, font=("Helvetica", 16))
result_label.pack(pady=20)
# 进入消息循环
window.mainloop()
```
您可以将这段代码保存为.py文件并运行,即可启动GUI界面。界面中有一个“选择图片”按钮,您可以点击该按钮选择待预测的图片,程序将会自动对该图片进行预测,并在界面上显示预测结果和待预测图片。
阅读全文