yolov5-master 实例分割推理 精简代码
时间: 2023-09-03 14:04:16 浏览: 131
yolov5目标检测代码yolov5-master (1).zip
以下是使用yolov5-master库进行实例分割推理的简化代码示例:
1. 导入所需库和模块:
```python
import torch
from PIL import Image
from yolov5.models.experimental import attempt_load
from yolov5.utils.general import non_max_suppression, scale_coords
from yolov5.utils.datasets import letterbox
from yolov5.utils.plots import plot_one_box
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
```
2. 定义推理函数:
```python
def instance_segmentation(image_path):
# 加载模型
model_path = 'path/to/your/model.pt'
model = attempt_load(model_path, map_location=device) # 加载模型
model.to(device).eval()
# 读取图像
image = Image.open(image_path)
original_image = image.copy()
image = letterbox(image, new_shape=model.imgsz)[0]
# 转换为Tensor
image = torch.from_numpy(image.transpose(2, 0, 1)).float().div(255.0).unsqueeze(0).to(device)
# 进行推理
pred = model(image)[0]
pred = non_max_suppression(pred, conf_thres=0.3, iou_thres=0.45)
# 处理预测结果
for det in pred[0]:
if det is not None:
det[:, :4] = scale_coords(image.shape[2:], det[:, :4], original_image.size).round()
# 绘制边框和标签
for *xyxy, conf, cls in reversed(det):
plot_one_box(xyxy, original_image, label=f'{conf:.2f}', color=(0, 255, 0), line_thickness=3)
# 显示结果
original_image.show()
```
3. 调用推理函数:
```python
if __name__ == '__main__':
image_path = 'path/to/your/image.jpg'
instance_segmentation(image_path)
```
请确保已将模型文件和待推理的图像文件路径正确设置,并对代码进行适当的调整以满足自己的需求。这是一个简化的示例代码,你还可以根据具体情况对其进行修改和优化。
阅读全文