(LSTM\CNN)模型预测代码
时间: 2024-07-01 21:00:43 浏览: 101
LSTM(长短期记忆网络)和CNN(卷积神经网络)都是深度学习中用于序列数据处理的重要模型,常用于时间序列预测任务。以下是一个简单的Python代码框架,使用Keras库来构建一个基本的LSTM或CNN预测模型:
```python
# 导入所需库
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Conv1D, Dense, Flatten, TimeDistributed
# 假设我们有一个名为'time_series_data'的输入数据集,和对应的标签'targets'
# time_series_data.shape应该是 (samples, timesteps, features)
# targets.shape应该是 (samples,)
# 构建LSTM模型
model_lstm = Sequential()
model_lstm.add(LSTM(units=64, input_shape=(timesteps, features), return_sequences=True))
model_lstm.add(Flatten())
model_lstm.add(Dense(units=32, activation='relu'))
model_lstm.add(Dense(units=1, activation='linear')) # 输出层
# 或者构建CNN模型(假设时间序列数据有一维空间结构)
model_cnn = Sequential()
model_cnn.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(timesteps, features)))
model_cnn.add(MaxPooling1D(pool_size=2))
model_cnn.add(Flatten())
model_cnn.add(Dense(units=32, activation='relu'))
model_cnn.add(Dense(units=1, activation='linear'))
# 编译模型
model_lstm.compile(optimizer='adam', loss='mse', metrics=['mae']) # 使用均方误差作为损失函数
model_cnn.compile(optimizer='adam', loss='mse', metrics=['mae'])
# 训练模型
model_lstm.fit(time_series_data, targets, epochs=50, batch_size=32)
model_cnn.fit(time_series_data, targets, epochs=50, batch_size=32)
# 预测
predictions_lstm = model_lstm.predict(test_data)
predictions_cnn = model_cnn.predict(test_data)
阅读全文