CNN-LSTM寿命预测模型MATLAB相关代码
时间: 2023-10-24 13:10:06 浏览: 100
基于卷积神经网络-长短期记忆网络(CNN-LSTM)时间序列预测,MATLAB代码 评价指标包括:R2、MAE、MSE、RM
以下是一个简单的CNN-LSTM寿命预测模型MATLAB代码示例:
```matlab
%% 数据准备
load('data.mat'); % 导入数据
X = data(:,1:end-1); % 特征变量
Y = data(:,end); % 目标变量
%% 数据预处理
% 标准化特征变量
mu = mean(X);
sigma = std(X);
X = (X - mu) ./ sigma;
% 将数据划分为训练集和测试集
[trainInd,testInd] = dividerand(size(X,1),0.7,0.3); % 70%训练,30%测试
% 将数据转换为时间序列格式
XTrain = cell(size(trainInd));
YTrain = cell(size(trainInd));
for i = 1:length(trainInd)
XTrain{i} = transpose(X(trainInd(i)-99:trainInd(i),:));
YTrain{i} = Y(trainInd(i));
end
XTest = cell(size(testInd));
YTest = cell(size(testInd));
for i = 1:length(testInd)
XTest{i} = transpose(X(testInd(i)-99:testInd(i),:));
YTest{i} = Y(testInd(i));
end
%% 构建模型
% CNN层
inputSize = size(XTrain{1},1);
filterSize = 5;
numFilters = 16;
poolSize = 2;
convLayer = sequenceInputLayer(inputSize,'Name','input');
convLayer = addConvolution2dLayer(convLayer,numFilters,filterSize,'Name','conv');
convLayer = addReLUActivationLayer(convLayer,'Name','relu');
convLayer = addMaxPooling2dLayer(convLayer,poolSize,'Stride',2,'Name','maxpool');
% LSTM层
numHiddenUnits = 100;
lstmLayer = addLSTMLayer(convLayer,numHiddenUnits,'OutputMode','last','Name','lstm');
% 全连接层
numClasses = 1;
fcLayer = addFullyConnectedLayer(lstmLayer,numClasses,'Name','fc');
% 输出层
outputLayer = regressionLayer('Name','output');
% 将层组装成网络
layers = [convLayer;lstmLayer;fcLayer;outputLayer];
net = assembleNetwork(layers);
%% 训练模型
options = trainingOptions('adam', ...
'MaxEpochs',50, ...
'MiniBatchSize',64, ...
'ValidationData',{XTest,YTest}, ...
'ValidationFrequency',10, ...
'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,net,options);
%% 预测和评估
YPred = predict(net,XTest);
rmse = sqrt(mean((YTest - YPred).^2));
fprintf('RMSE: %f\n',rmse);
```
请注意,此示例代码仅用于展示CNN-LSTM寿命预测模型的基本结构和MATLAB中的实现方式。实际应用中,您需要根据数据的特点进行适当的调整和优化,以获得更好的预测结果。
阅读全文