cnn-lstm-attention序列预测的matlab代码
时间: 2023-09-01 11:10:54 浏览: 226
cnn+lstm+attention对时序数据进行预测
5星 · 资源好评率100%
以下是使用CNN-LSTM-Attention模型进行序列预测的MATLAB代码示例:
```matlab
% 加载数据
load data.mat
% 数据预处理
XTrain = permute(XTrain,[2 3 4 1]);
XTest = permute(XTest,[2 3 4 1]);
YTrain = categorical(YTrain);
YTest = categorical(YTest);
% 定义CNN层
layers = [
imageInputLayer([32 32 3])
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,64,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,128,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
];
% 定义LSTM层
inputSize = 128;
numHiddenUnits = 64;
numClasses = 10;
lstmLayers = [
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer
];
% 定义Attention层
attention = attentionLayer(numHiddenUnits);
% 将CNN和LSTM层连接起来
layers = [
layers
sequenceFoldingLayer('Name','fold')
lstmLayers
sequenceUnfoldingLayer('Name','unfold')
attention
];
% 定义训练选项
options = trainingOptions('adam', ...
'MaxEpochs',30, ...
'MiniBatchSize',64, ...
'Plots','training-progress');
% 训练模型
net = trainNetwork(XTrain,YTrain,layers,options);
% 测试模型
YPred = classify(net,XTest);
accuracy = sum(YPred == YTest)/numel(YTest);
disp(['Test accuracy: ' num2str(accuracy)])
```
需要注意的是,上述代码中用到的`attentionLayer`函数需要自行实现。你可以参考以下代码:
```matlab
classdef attentionLayer < nnet.layer.Layer
properties
HiddenSize
AttentionWeights
end
methods
function layer = attentionLayer(hiddenSize,name)
layer.HiddenSize = hiddenSize;
layer.Name = name;
layer.AttentionWeights = layer.initWeights(hiddenSize);
end
function weights = initWeights(~,hiddenSize)
weights = randn(hiddenSize,1);
end
function Z = predict(layer,X)
W = layer.AttentionWeights;
Z = tanh(W'*X);
end
function [dLdX,dLdW] = backward(layer,X,~,dLdZ,~)
W = layer.AttentionWeights;
Y = layer.predict(X);
dLdY = dLdZ.*(1-Y.^2);
dLdW = dLdY*X';
dLdX = W*dLdY;
end
end
end
```
这个实现只是一个简单的示例,你可以根据自己的需求进行修改和扩展。
阅读全文