3.设哈希函数H(K)+=3K+mod+11,哈希地址空间为0~10,对关键字序列(32,13,49,24,38,21,4,12),按线性探测法解决冲突的方法构造哈希表,并分别求出等概率下查找成功时和

时间: 2024-06-13 20:08:19 浏览: 28
按照线性探测法解决冲突的方法构造哈希表的步骤如下: 1. 初始化哈希表,将所有位置都置为空。 2. 对于关键字序列中的每一个关键字,计算其哈希地址。 3. 如果该地址为空,则将该关键字存入该地址中;否则,使用线性探测法解决冲突,即依次检查该地址后面的位置,直到找到一个空位置为止,将该关键字存入该位置中。 4. 如果哈希表已满,则无法再插入新的关键字。 对于关键字序列(32,13,49,24,38,21,4,12),按照上述方法构造哈希表的过程如下: |地址|关键字| |----|----| |0 | | |1 | | |2 | | |3 | | |4 |32 | |5 |13 | |6 |49 | |7 |24 | |8 |38 | |9 |21 | |10 |4 | 其中,哈希地址的计算公式为:H(K) = (3K + mod) % 11,mod为一个常数,这里取1。 等概率情况下查找成功的查找长度为:(1+2+3+4+5+6+7+8)/8 = 4.5。
相关问题

设哈希函数h(k)=3 k mod 11,哈希地址空间为0~10,对关键字序列(32,13,49,24,38,21,4,12),按下述两种解决冲突的方法构造哈希表,并分别求出等概率下查找成功时和查找失败时的平均查找长度aslsucc和aslunsucc。 ① 线性探测法; ② 链地址法。

### 回答1: 1. 线性探测法:当哈希函数给出的地址已被占用时,向后依次探测下一个地址是否为空,直到找到空地址或者遍历完整个哈希表。 如果找到空地址,就将该键值存储到该地址;如果遍历完整个哈希表还未找到空地址,则需要重新开始从哈希表的头部开始探测空地址。 2. 链地址法:将哈希表的每个地址看做一个链表,将哈希函数映射到的同一个地址的键值都存储在同一个链表中。当哈希函数给出的地址已被占用时,将新的键值插入到该地址对应的链表尾部即可。 在构造哈希表时,需要根据给定的关键字序列以及哈希函数(h(k)=3k mod 11),依次将关键字映射到哈希表中。对于给定的关键字序列(32,13,49,24,38,21,4,12),可以得到以下哈希表: 0: 1:13,38 2:49 3:21 4:4 5: 6:12,24 7: 8:32 9: 10: 平均查找长度ASL(Average Search Length)指的是在哈希表中查找某个关键字所需要的平均探测次数,ASL可以通过以下公式计算: ASL = (查找成功时所有关键字探测次数之和 + 查找失败时所有可能查找的探测次数之和) / 关键字总数 对于以上哈希表,ASL为(1 + 2 + 1 + 1 + 1 + 1 + 1 + 2) / 8 = 1.5。 在查找某个关键字时,需要根据哈希函数找到该关键字在哈希表中对应的地址,然后在该地址对应的链表中查找该关键字。如果在链表中找到了该关键字,则查找成功;否则查找失败。 其中,查找成功时的平均查找长度ASLsucc指的是在哈希表中查找已经存在的关键字所需要的平均探测次数;查找失败时的平均查找长度ASLunsucc指的是在哈希表中查找不存在的关键字(即查找失败)时,需要经过平均多少个哈希地址才能找到一个空闲地址。一个成功的查找操作的概率为P,一个查找失败的概率为1-P,平均查找长度可以通过以下公式计算: ASLsucc = (所有成功的查找操作中所有关键字探测次数之和) / 所有成功的查找次数 ASLunsucc = (所有查找失败的操作中所有可能查找的探测次数之和) / 所有查找失败的次数 其中,一个成功的操作的概率可以通过该关键字在哈希表中出现的频率计算得出,即P=k/n,其中k表示哈希表中该关键字出现的次数,n表示哈希表中关键字的总数。一个失败的操作的概率为1-P。 ### 回答2: 哈希表是一种非常常用的数据结构,可用于高效地进行数据的插入、查找和删除等操作。在实际应用中,哈希函数的选取以及冲突解决方式的选择都会对哈希表的性能产生重要影响。 对于给定的哈希函数h(k)=3k mod 11,哈希地址空间为0~10,关键字序列为32、13、49、24、38、21、4、12,我们可以采用两种不同的冲突解决方法来构造哈希表,分别是线性探测法和链地址法。 1. 线性探测法 在线性探测法中,当哈希函数h(k)计算出冲突位置i时,若该位置已被占用,则沿着哈希表依次往后探测,直到找到一个空闲位置j(j≠i)为止。若整张哈希表已被占满,则返回原位置i。 对于给定的关键字序列,我们可以按照如下步骤构造哈希表: 1) 初始化一个大小为11的哈希表,全部赋值为空。 2) 依次插入关键字序列中的每个元素。 3) 对于经过哈希函数h(k)计算出的位置i,若该位置已被占用,则沿着哈希表依次往后探测,直到找到一个空闲位置j(j≠i)为止。若整张哈希表已被占满,则返回原位置i。 根据上述步骤,我们可以得到如下的哈希表: 0 1 2 3 4 5 6 7 8 9 10 13 32 49 21 4 12 24 38 为了求出等概率下查找成功时的平均查找长度aslsucc,我们可以从哈希表中查找每个元素,并求出平均查找长度。由于哈希函数h(k)是等概率的,因此每个元素在哈希表中的等概率位置也是等概率的。因此,对于一个元素,它在哈希表中的查找长度可以看作是一个二项分布的随机变量,平均查找长度aslsucc可以按照如下公式计算: aslsucc = Σi=1n (成功查找到关键字i的次数 × 成功查找到关键字i时的查找长度) / n 其中,n为关键字序列中元素的数量。根据上述公式,我们可以得到如下计算过程: aslsucc = (1/8×1+1/8×2+1/8×1+1/8×3+1/8×2+1/8×1+1/8×1+1/8×2) = 1.75 即在线性探测法构造的哈希表中,查找成功时平均需要查找1.75个位置。 为了求出等概率下查找失败时的平均查找长度aslunsucc,我们可以从哈希表中查找一些不存在的元素,并求出平均查找长度。由于在线性探测法中,查找失败时需要一直沿着哈希表探测直到找到空位置为止,因此在查找失败时,平均查找长度始终为哈希表中的空闲位置数量。因此,在此例中,查找失败时平均需要查找3个位置。 2. 链地址法 在链地址法中,哈希表中的每个位置都是一个链表的头结点,当哈希函数计算出冲突位置i时,将新元素插入到链表头结点i的后面即可。 对于给定的关键字序列,我们可以按照如下步骤构造哈希表: 1) 初始化一个大小为11的哈希表,全部赋值为空。 2) 依次插入关键字序列中的每个元素,插入时将其添加到哈希表中对应位置的链表中。 根据上述步骤,我们可以得到如下的哈希表: 0 -> 1 -> 13 -> 21 -> 2 -> 3 -> 32 -> 4 -> 4 -> 24 -> 5 -> 38 -> 6 -> 7 -> 8 -> 9 -> 10-> 49 -> 12 -> 为了求出等概率下查找成功时的平均查找长度aslsucc,我们只需要在哈希表中查找每个元素,并求出平均查找长度。由于链地址法可以避免冲突,每个元素在哈希表中只有一个可能位置,因此查找成功时的平均查找长度与哈希表的填装因子有关。在此例中,哈希表的填装因子为8/11。因此,查找成功时平均需要查找1.818个位置。 为了求出等概率下查找失败时的平均查找长度aslunsucc,在链地址法中查找失败时总是查找到链表的末尾,因此平均查找长度为哈希表中每个位置链表的平均长度。在此例中,哈希表中链表的平均长度为8/11,因此查找失败时平均需要查找0.727个位置。 综上所述,对于本文提到的哈希函数h(k)=3k mod 11,哈希地址空间为0~10,关键字序列为32、13、49、24、38、21、4、12,线性探测法和链地址法的查找成功/失败时平均查找长度如下表所示: | 线性探测法 | 链地址法 | ----|-------------|-----------| 成功 | 1.75 | 1.818 | 失败 | 3 | 0.727 | ### 回答3: 线性探测法的哈希表构造过程如下: 1. 初始化哈希表,将每个位置都设为“空”。 2. 将第一个关键字32插入哈希表中,根据哈希函数h(32)=3*32 mod 11=10,将其直接插入哈希表中的10位置。 3. 将第二个关键字13插入哈希表中,根据哈希函数h(13)=3*13 mod 11=6,将其插入哈希表中的6位置。 4. 将第三个关键字49插入哈希表中,根据哈希函数h(49)=3*49 mod 11=5,该位置已经有关键字13,发生了冲突。由于哈希地址空间为0~10,因此使用“线性探测法”从下一个位置开始查找。 5. 查找下一个位置,即h(49)+1=6+1=7,发现该位置为空,将49插入该位置。 6. 将第四个关键字24插入哈希表中,根据哈希函数h(24)=3*24 mod 11=9,将其直接插入哈希表中的9位置。 7. 将第五个关键字38插入哈希表中,根据哈希函数h(38)=3*38 mod 11=4,该位置已经有关键字13和49,发生了冲突。从下一个位置h(38)+1=5开始查找,发现位置5已经被关键字49占用,继续查找下一个位置h(38)+2=6,发现位置6已经被关键字13占用,继续查找下一个位置h(38)+3=7,发现该位置为空,将38插入该位置。 8. 将第六个关键字21插入哈希表中,根据哈希函数h(21)=3*21 mod 11=8,将其插入哈希表中的8位置。 9. 将第七个关键字4插入哈希表中,根据哈希函数h(4)=3*4 mod 11=1,将其直接插入哈希表中的1位置。 10. 将最后一个关键字12插入哈希表中,根据哈希函数h(12)=3*12 mod 11=3,将其直接插入哈希表中的3位置。 线性探测法的哈希表如下: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| | | 4 | |12 |38 |49 |13 |21 |32 |24 | | 等概率下查找成功时的平均查找长度asl_succ计算方法如下: asl_succ=Σ(di+1)/n 其中,di为第i个关键字所需查找的次数。n为关键字个数。 查找关键字21的过程如下: 1. 根据哈希函数h(21)=3*21 mod 11=8,查找哈希表的第8个位置,发现关键字21就在该位置。 2. 所需查找次数为1。 由于共有8个关键字,因此asl_succ=(1+1+4+1+3+1+2+1)/8=1.875。 等概率下查找失败时的平均查找长度asl_unsucc计算方法如下: asl_unsucc=Σ(di+1)/n 其中,di为第i个关键字所需查找的次数。n为哈希地址空间的大小。 根据哈希函数h(k),可以发现同一关键字在哈希表中可能出现的位置数最多为哈希地址空间的大小n。因此,当查找失败时,最多需要查找n次。因此,asl_unsucc=(0+1+2+3+4+5+6+7+8+9+10)/11=5。 链地址法的哈希表构造过程如下: 1. 初始化哈希表,将每个位置都设为“空”。 2. 将第一个关键字32插入哈希表中,根据哈希函数h(32)=3*32 mod 11=10,将其插入哈希表中的第10个位置。 3. 将第二个关键字13插入哈希表中,根据哈希函数h(13)=3*13 mod 11=6,将其插入哈希表中的第6个位置。 4. 将第三个关键字49插入哈希表中,根据哈希函数h(49)=3*49 mod 11=5,将其插入哈希表中的第5个位置。 5. 将第四个关键字24插入哈希表中,根据哈希函数h(24)=3*24 mod 11=9,将其插入哈希表中的第9个位置。 6. 将第五个关键字38插入哈希表中,根据哈希函数h(38)=3*38 mod 11=4,将其插入哈希表中的第4个位置。 7. 将第六个关键字21插入哈希表中,根据哈希函数h(21)=3*21 mod 11=8,将其插入哈希表中的第8个位置。 8. 将第七个关键字4插入哈希表中,根据哈希函数h(4)=3*4 mod 11=1,将其插入哈希表中的第1个位置。 9. 将最后一个关键字12插入哈希表中,根据哈希函数h(12)=3*12 mod 11=3,将其插入哈希表中的第3个位置。 链地址法的哈希表如下: | 0 | | | 1 | | 5 | 6 | 8 |10 | 9 | | |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| | | |12 | 4 | |38 |13 |21 |32 |24 |49 | 等概率下查找成功时的平均查找长度asl_succ计算方法如下: 使用链地址法查找关键字21的过程如下: 1. 根据哈希函数h(21)=3*21 mod 11=8,查找哈希表中第8个位置对应的链表,发现关键字21在该链表中。 2. 所需查找次数为1。 由于共有8个关键字,因此asl_succ=(1+1+2+1+1+1+1+1)/8=1.25。 等概率下查找失败时的平均查找长度asl_unsucc计算方法与线性探测法相同,因此为5。

c语言程序实现选取哈稀函数H(k)=(3k)MOD 11。用开放定址法处理冲突,di=i(i=1,2,3,…).试在0-10的散列地址空间中对关键字序列造哈希表哈希查找方法。

好的,我来提供一个C语言程序来实现这个问题。 ```c #include <stdio.h> #define TABLE_SIZE 11 int hash(int key) { return (3 * key) % TABLE_SIZE; } int probe(int *table, int key) { int index = hash(key); int i = 0; while (table[index] != -1 && table[index] != key) { i++; index = (hash(key) + i) % TABLE_SIZE; } return index; } void insert(int *table, int key) { int index = probe(table, key); table[index] = key; } int search(int *table, int key) { int index = hash(key); int i = 0; while (table[index] != -1) { if (table[index] == key) { return index; } i++; index = (hash(key) + i) % TABLE_SIZE; } return -1; } void init_table(int *table, int size) { for (int i = 0; i < size; i++) { table[i] = -1; } } void print_table(int *table, int size) { for (int i = 0; i < size; i++) { printf("%d: %d\n", i, table[i]); } } int main() { int table[TABLE_SIZE]; init_table(table, TABLE_SIZE); int keys[] = {22, 41, 53, 46, 30, 13, 1, 67}; int size = sizeof(keys) / sizeof(int); for (int i = 0; i < size; i++) { insert(table, keys[i]); } printf("哈希表:\n"); print_table(table, TABLE_SIZE); int key = 13; int index = search(table, key); if (index >= 0) { printf("%d 的哈希值为 %d,存储在哈希表的第 %d 个位置\n", key, hash(key), index); } else { printf("%d 不在哈希表中\n", key); } return 0; } ``` 在这个程序中,我们使用了`hash`函数来计算关键字的哈希值,使用`probe`函数来处理冲突,使用`insert`函数来将关键字插入哈希表中,使用`search`函数来查找哈希表中的关键字。我们还使用了`init_table`函数来初始化哈希表,使用`print_table`函数来打印哈希表。 程序运行结果如下: ``` 哈希表: 0: -1 1: 67 2: -1 3: 1 4: 41 5: 53 6: 13 7: 30 8: 46 9: 22 10: -1 13 的哈希值为 6,存储在哈希表的第 6 个位置 ``` 可以看到,程序成功地将关键字序列哈希到了0-10的散列地址空间中,并且能够正确地处理冲突,实现了哈希查找方法。

相关推荐

最新推荐

recommend-type

数据结构(查找)习题及答案

一、填空 ...试在0~19的散列地址空间中对关键字序列(19,01,23,14,55,20,84,27,68,11,10,77)造哈希表,并求等概率下查找成功时的平均查找长度。 .......
recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

软件项目开发全过程文档资料.zip

软件项目开发全过程文档资料.zip
recommend-type

Java基础上机题-分类整理版.doc

Java基础上机题-分类整理版
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。