Transformer 图像修复
时间: 2023-11-14 08:55:23 浏览: 154
MAT:用于大孔图像修复的Mask-AwareTransformer.zip
Transformer图像修复是指利用Transformer模型进行图像修复的一种方法。在NeurIPS2022会议上,有一篇名为《Cross Aggregation Transformer for Image Restoration》的论文介绍了一种基于Transformer的图像修复方法。该方法利用Transformer的自注意力机制和跨通道聚合机制来提取图像中的上下文信息,并通过重建网络来恢复损坏的图像。这篇论文在知乎上也有相关的解读和讨论。此外,还有其他的Transformer模型用于图像修复,例如引用中提到的Axis-based Transformer Block和Dual Gated Feed-forward Network(GDFN)。这些Transformer模型通过学习图像中的局部和全局特征,能够有效地修复图像中的噪声、模糊等问题,提高图像的质量和清晰度。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
阅读全文