YOLOV5加SAM注意力
时间: 2023-08-21 20:03:08 浏览: 178
YOLOV5是一种目标检测算法,而SAM(Spatial Attention Module)是CBAM(Convolutional Block Attention Module)中的一个子模块,用于在空间维度上进行注意力特征融合。SAM的作用是通过对输入特征图进行空间维度上的注意力计算,提取出重要的空间信息,从而增强目标检测的性能。通过将SAM集成到YOLOV5中,可以提高目标检测的准确性和鲁棒性。\[1\]\[3\]
#### 引用[.reference_title]
- *1* [深度学习实战 2 YOLOv5 添加CBAM、CA、ShuffleAttention注意力机制](https://blog.csdn.net/qq_41134483/article/details/127708681)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [目标检测算法——YOLOv5/YOLOv7改进之结合CBAM注意力机制](https://blog.csdn.net/m0_53578855/article/details/124056417)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文