C++ 求解TSP旅行商问题
时间: 2024-12-25 08:12:47 浏览: 3
### C++ 实现 TSP 解决方案
针对旅行商问题(TSP),一种常见的解决方法是通过动态规划来实现。下面展示了一个基于动态规划的C++代码片段,该程序能够有效地处理较小规模的城市数量情况下的TSP问题。
```cpp
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int tsp(const vector<vector<int>>& dist, int set_of_cities, int city, const vector<bool>& visited, vector<vector<int>>& memo){
if(set_of_cities == (1<<city)){
return dist[0][city];
}
if(memo[set_of_cities][city] != -1){
return memo[set_of_cities][city];
}
int min_dist = INT_MAX;
for(int i = 0; i < dist.size(); ++i){
if(!visited[i]){
vector<bool> new_visited = visited;
new_visited[i] = true;
int current_set = set_of_cities | (1 << i);
int distance = dist[city][i] + tsp(dist, current_set, i, new_visited, memo);
if(distance < min_dist){
min_dist = distance;
}
}
}
memo[set_of_cities][city] = min_dist;
return min_dist;
}
void solve_tsp(vector<vector<int>> distances){
int n = distances.size();
vector<bool> visited(n, false);
visited[0] = true;
vector<vector<int>> memo((1<<n), vector<int>(n, -1));
cout << "The minimum cost of travelling salesman problem is: "
<< tsp(distances, 1, 0, visited, memo) << endl;
}
```
此段代码实现了对于给定的距离矩阵`distances`求解最小路径长度的功能[^1]。需要注意的是,在实际应用中可能还需要考虑更多细节,比如输入验证、异常处理等。此外,当城市数目较大时,上述算法的时间复杂度会急剧上升,因此在这种情况下建议采用启发式或近似算法如模拟退火法、遗传算法或是粒子群优化算法等进行改进[^2]。
阅读全文