深度学习图像去雾代码
时间: 2024-02-04 11:02:38 浏览: 137
以下是一个使用深度学习进行图像去雾的代码示例:
```python
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models
# 定义去雾网络模型
class DehazeNet(nn.Module):
def __init__(self):
super(DehazeNet, self).__init__()
self.features = models.vgg16(pretrained=True).features
self.conv1 = nn.Conv2d(512, 1, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.features(x)
x = self.conv1(x)
x = self.relu(x)
return x
# 加载预训练的去雾网络模型
model = DehazeNet()
model.load_state_dict(torch.load('dehaze_model.pth'))
model.eval()
# 加载待去雾的图像
image = cv2.imread('hazy_image.jpg')
# 图像预处理
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = image / 255.0
image = torch.from_numpy(image.transpose((2, 0, 1))).float().unsqueeze(0)
# 使用去雾网络进行去雾
with torch.no_grad():
dehazed_image = model(image)
# 后处理
dehazed_image = dehazed_image.squeeze().numpy()
dehazed_image = np.clip(dehazed_image, 0, 1)
dehazed_image = dehazed_image.transpose((1, 2, 0))
dehazed_image = cv2.cvtColor(dehazed_image, cv2.COLOR_RGB2BGR)
dehazed_image = (dehazed_image * 255).astype(np.uint8)
# 显示去雾结果
cv2.imshow('Dehazed Image', dehazed_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码使用了一个基于VGG16的去雾网络模型,通过加载预训练的模型和输入待去雾的图像,可以得到去雾后的图像结果。你可以将待去雾的图像保存为'hazy_image.jpg',并将预训练的去雾网络模型保存为'dehaze_model.pth',然后运行上述代码即可得到去雾后的图像。
阅读全文