python实现NSGAIII算法
时间: 2023-11-25 14:49:29 浏览: 86
NSGA-III是一种多目标优化算法,它是NSGA-II的改进版,主要用于解决多目标优化问题。下面是Python实现NSGA-III算法的步骤:
1. 安装必要的Python库,如numpy、matplotlib、pandas等。
2. 定义问题的目标函数和约束条件。
3. 初始化种群,可以使用随机数生成初始种群。
4. 计算每个个体的适应度值。
5. 根据适应度值对种群进行排序。
6. 选择优秀的个体进行交叉和变异操作,生成新的个体。
7. 计算新个体的适应度值。
8. 将新个体加入种群中。
9. 根据适应度值对种群进行排序。
10. 选择最优的个体作为解决方案。
下面是Python实现NSGA-III算法的示例代码:
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# 定义目标函数和约束条件
def obj_func(x):
f1 = x[0]**2 + x[1]**2
f2 = (x[0]-1)**2 + x[1]**2
return [f1, f2]
def constraint(x):
if x[0] + x[1] - 1.5 > 0:
return False
else:
return True
# 初始化种群
def init_population(pop_size, num_var):
population = np.random.rand(pop_size, num_var)
return population
# 计算适应度值
def fitness(population):
fitness_values = []
for i in range(len(population)):
if constraint(population[i]):
fitness_values.append(obj_func(population[i]))
else:
fitness_values.append([float('inf'), float('inf')])
return np.array(fitness_values)
# 快速非支配排序
def fast_non_dominated_sort(fitness_values):
S = [[] for i in range(len(fitness_values))]
front = [[]]
n = [0 for i in range(len(fitness_values))]
rank = [0 for i in range(len(fitness_values))]
for p in range(len(fitness_values)):
for q in range(len(fitness_values)):
if (fitness_values[p][0] < fitness_values[q][0] and fitness_values[p][1] < fitness_values[q][1]):
if q not in S[p]:
S[p].append(q)
elif (fitness_values[q][0] < fitness_values[p][0] and fitness_values[q][1] < fitness_values[p][1]):
n[p] += 1
if n[p] == 0:
rank[p] = 0
if p not in front[0]:
front[0].append(p)
i = 0
while (front[i] != []):
Q = []
for p in front[i]:
for q in S[p]:
n[q] -= 1
if (n[q] == 0):
rank[q] = i + 1
if q not in Q:
Q.append(q)
i += 1
front.append(Q)
del front[len(front)-1]
return front
# 计算拥挤度
def crowding_distance(fitness_values, front):
distance = [0 for i in range(len(fitness_values))]
for f in front:
f_fitness = fitness_values[f]
sorted_f = [x for _,x in sorted(zip(f_fitness, f))]
distance[sorted_f[0]] = float('inf')
distance[sorted_f[-1]] = float('inf')
for i in range(1, len(sorted_f)-1):
distance[sorted_f[i]] += (sorted_f[i+1][0] - sorted_f[i-1][0])/(max(fitness_values[:,0])-min(fitness_values[:,0]))
return distance
# 选择操作
def selection(population, fitness_values, num_parents):
parents = np.empty((num_parents, population.shape[1]))
for i in range(num_parents):
front = fast_non_dominated_sort(fitness_values)[0]
crowding_dist = crowding_distance(fitness_values, front)
index = np.argmax(crowding_dist)
parents[i,:] = population[front[index]]
fitness_values[front[index]] = [-1,-1]
return parents
# 交叉操作
def crossover(parents, offspring_size):
offspring = np.empty(offspring_size)
for i in range(offspring_size[0]):
parent1_idx = i % parents.shape[0]
parent2_idx = (i+1) % parents.shape[0]
crossover_point = np.random.randint(1, offspring_size[1]-1)
offspring[i, 0:crossover_point] = parents[parent1_idx, 0:crossover_point]
offspring[i, crossover_point:] = parents[parent2_idx, crossover_point:]
return offspring
# 变异操作
def mutation(offspring_crossover):
for i in range(offspring_crossover.shape[0]):
mutation_point = np.random.randint(0, offspring_crossover.shape[1]-1)
offspring_crossover[i, mutation_point] = np.random.rand()
return offspring_crossover
# NSGA-III算法
def nsga3(pop_size, num_var, num_obj, num_gen):
population = init_population(pop_size, num_var)
for i in range(num_gen):
fitness_values = fitness(population)
parents = selection(population, fitness_values, pop_size//2)
offspring_crossover = crossover(parents, offspring_size=(pop_size-parents.shape[0], num_var))
offspring_mutation = mutation(offspring_crossover)
population = np.vstack((parents, offspring_mutation))
fitness_values = fitness(population)
front = fast_non_dominated_sort(fitness_values)[0]
crowding_dist = crowding_distance(fitness_values, front)
index = np.argsort(-crowding_dist)
selected = index[:pop_size]
return population[selected]
# 示例
pop_size = 100
num_var = 2
num_obj = 2
num_gen = 100
result = nsga3(pop_size, num_var, num_obj, num_gen)
print(result)
# 相关问题:
--相关问题--:
阅读全文