python西瓜书决策树

时间: 2024-05-10 21:12:53 浏览: 111
《Python机器学习基础教程》(Python Machine Learning)这本书中有一章讲述了决策树。决策树是一种基于树结构来进行决策的算法,可以用于分类和回归问题。 在使用决策树进行分类时,我们会根据数据集的特征,将其分为不同的类别。具体来说,我们会首先选取一个特征作为根节点,然后针对每个子节点再选择一个新的特征,直到最终得到叶子节点。在这个过程中,我们需要使用某种度量方法来选择最优的特征。 决策树有很多种算法,在西瓜书中介绍了ID3、C4.5和CART算法。其中ID3算法和C4.5算法使用信息熵作为度量方法,而CART算法则使用基尼不纯度。 使用决策树进行分类时,我们需要注意过拟合问题。过拟合指的是模型在训练集上表现很好,但在测试集上表现不佳的情况。为了避免过拟合,我们可以采用剪枝等技术。
相关问题

西瓜书决策树Python

《统计学习方法》(西瓜书)是一本经典的机器学习教材,其中介绍了决策树算法。决策树是一种基于树结构的分类模型,它通过对数据进行递归分割,构建出一棵树来进行分类。在决策树的构建过程中,需要选择合适的特征进行分割,并且需要考虑如何处理缺失值、如何处理连续值等问题。 在Python中,可以使用scikit-learn库来实现决策树算法。scikit-learn提供了DecisionTreeClassifier和DecisionTreeRegressor两个类来实现分类和回归问题的决策树算法。使用这些类,可以方便地构建决策树模型,并进行训练和预测。 如果你想深入了解决策树算法的原理和实现,可以参考《统计学习方法》中的相关章节。如果你想使用Python来实现决策树算法,可以参考scikit-learn库的文档和示例代码。

用Python写一个西瓜书id3决策树模型

好的,以下是用Python实现的西瓜书id3决策树模型的代码: ```python import math import pandas as pd class Node: ''' 决策树节点类 ''' def __init__(self, col=-1, value=None, results=None, tb=None, fb=None): self.col = col # 待检验的判断条件所对应的列索引值 self.value = value # 为了使结果为True,当前列必须匹配的值 self.results = results # 存储叶节点上的结果,是一个字典形式,键为类别,值为次数 self.tb = tb # 左子树 self.fb = fb # 右子树 def load_data(): ''' 加载西瓜数据集,返回特征数据和标签 ''' data = pd.read_csv('watermelon.csv') return data.iloc[:, 1:-1], data.iloc[:, -1] def calc_entropy(labels): ''' 计算数据集的熵 ''' total = len(labels) counts = {} for label in labels: if label not in counts: counts[label] = 0 counts[label] += 1 entropy = 0.0 for key in counts: p = counts[key] / total entropy -= p * math.log2(p) return entropy def split_data(data, labels, col, value): ''' 根据给定特征划分数据集 ''' tb_rows, fb_rows = [], [] for i in range(len(data)): row = list(data.iloc[i]) if row[col] == value: tb_rows.append(row + [labels[i]]) else: fb_rows.append(row + [labels[i]]) return pd.DataFrame(tb_rows, columns=data.columns.tolist() + ['label']), pd.DataFrame(fb_rows, columns=data.columns.tolist() + ['label']) def build_tree(data, labels): ''' 构建决策树 ''' if len(labels) == 0: return Node() current_entropy = calc_entropy(labels) best_gain = 0.0 best_criteria = None best_sets = None feature_num = len(data.columns) for col in range(feature_num): column_values = set(data.iloc[:, col]) for value in column_values: tb_data, fb_data = split_data(data, labels, col, value) p = len(tb_data) / len(data) gain = current_entropy - p * calc_entropy(tb_data['label']) - (1 - p) * calc_entropy(fb_data['label']) if gain > best_gain and len(tb_data) > 0 and len(fb_data) > 0: best_gain = gain best_criteria = (col, value) best_sets = (tb_data, fb_data) if best_gain > 0: tb = build_tree(best_sets[0], best_sets[0]['label']) fb = build_tree(best_sets[1], best_sets[1]['label']) return Node(col=best_criteria[0], value=best_criteria[1], tb=tb, fb=fb) else: return Node(results={label: len([label for label in labels if label == '是']), '否': len([label for label in labels if label == '否'])}) def classify(sample, tree): ''' 使用决策树对单个样本进行分类 ''' if tree.results is not None: return tree.results else: v = sample[tree.col] branch = None if v == tree.value: branch = tree.tb else: branch = tree.fb return classify(sample, branch) def predict(data, tree): ''' 对数据集进行分类 ''' return [classify(list(data.iloc[i]), tree) for i in range(len(data))] data, labels = load_data() tree = build_tree(data, labels) print(predict(data, tree)) ``` 这里使用了pandas库来读取数据集,需要将数据集放在与代码文件相同的目录下,并命名为watermelon.csv。函数load_data返回的是特征数据和标签,分别是DataFrame类型和Series类型。函数build_tree实现了id3算法,返回构建好的决策树。函数classify用于对单个样本进行分类,函数predict用于对整个数据集进行分类。
阅读全文

相关推荐

zip
【项目介绍】 基于Python.Numpy实现决策树预测西瓜好坏源码+数据集+项目说明.zip 一、概述 基于Python.Numpy实现决策树,预测鸢尾花的种类与西瓜的好坏 # 二、文件夹结构功能 ### 1.文件夹 - figure:该文档中的图片 - data:鸢尾花与西瓜数据集 - dot:dot文件路径 ### 2.文件 - tree.py:树节点类 - decisiontree.py:决策树 - iris_test1.py:鸢尾花分类,测试离散属性分类,使用两个特征进行分类,绘制分类图 - iris_test2.py:鸢尾花分类,测试离散属性分类,使用四个特征进行分类,绘制决策树 - watermelon_test.py:西瓜分类,测试连续属性分类,绘制决策树 # 三、项目运行 ## 1.决策树分类结果演示 ### 1.1测试目标 - 使用二维特征对鸢尾花进行分类 - 绘制决策树在平面内分类界限 - 绘制决策树 - 观察决策树深度对预测正确率的影响 ### 1.2测试方式 - 运行iris_test1.py文件 ### 1.3测试结果 - 1.绘制决策树在平面内分类界限如下图所示,其中圆点为训练数据集,星点为测试数据集。 【备注】 1.项目代码均经过功能验证,确保稳定可靠运行。欢迎下载食用体验! 2.主要针对各个计算机相关专业,包括计算机科学、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师、企业员工。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.鼓励大家基于此进行二次开发。在使用过程中,如有问题或建议,请及时沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈!

最新推荐

recommend-type

决策树剪枝算法的python实现方法详解

在Python中实现决策树剪枝,通常会涉及到几个关键概念和算法,包括ID3、C4.5、CART等。 ID3算法是决策树构建的基础之一,它基于信息增益来选择最优属性进行节点划分。信息增益是衡量一个属性能带来多少信息减少,即...
recommend-type

Python机器学习之决策树算法实例详解

决策树算法是机器学习中的一种基础且广泛应用的分类方法,尤其在Python的机器学习领域中。它通过构建一棵树状模型来表示一个决定过程或预测模型。决策树以易于理解和解释著称,即使对于非技术背景的人来说,也能相对...
recommend-type

python使用sklearn实现决策树的方法示例

在Python的机器学习领域,`sklearn`库是不可或缺的一部分,它提供了丰富的算法,包括决策树。本示例将详细讲解如何使用`sklearn`库中的`DecisionTreeClassifier`类来构建决策树模型。 首先,确保你有一个合适的开发...
recommend-type

Python决策树之基于信息增益的特征选择示例

在Python中,信息增益是一种常见的特征选择方法,尤其在决策树算法中被广泛应用。本篇文章将深入探讨基于信息增益的特征选择,并通过一个具体的实例来说明其原理和实现过程。 1. **信息增益的定义**: - **熵**...
recommend-type

Python如何生成树形图案

在Python编程中,生成树形图案是一种有趣且富有创意的应用,它可以用来展示数据结构或创建艺术作品。本篇文章将深入探讨如何使用Python结合Tkinter库来实现这一目标。Tkinter是Python的标准图形用户界面(GUI)库,...
recommend-type

Angular程序高效加载与展示海量Excel数据技巧

资源摘要信息: "本文将讨论如何在Angular项目中加载和显示Excel海量数据,具体包括使用xlsx.js库读取Excel文件以及采用批量展示方法来处理大量数据。为了更好地理解本文内容,建议参阅关联介绍文章,以获取更多背景信息和详细步骤。" 知识点: 1. Angular框架: Angular是一个由谷歌开发和维护的开源前端框架,它使用TypeScript语言编写,适用于构建动态Web应用。在处理复杂单页面应用(SPA)时,Angular通过其依赖注入、组件和服务的概念提供了一种模块化的方式来组织代码。 2. Excel文件处理: 在Web应用中处理Excel文件通常需要借助第三方库来实现,比如本文提到的xlsx.js库。xlsx.js是一个纯JavaScript编写的库,能够读取和写入Excel文件(包括.xlsx和.xls格式),非常适合在前端应用中处理Excel数据。 3. xlsx.core.min.js: 这是xlsx.js库的一个缩小版本,主要用于生产环境。它包含了读取Excel文件核心功能,适合在对性能和文件大小有要求的项目中使用。通过使用这个库,开发者可以在客户端对Excel文件进行解析并以数据格式暴露给Angular应用。 4. 海量数据展示: 当处理成千上万条数据记录时,传统的方式可能会导致性能问题,比如页面卡顿或加载缓慢。因此,需要采用特定的技术来优化数据展示,例如虚拟滚动(virtual scrolling),分页(pagination)或懒加载(lazy loading)等。 5. 批量展示方法: 为了高效显示海量数据,本文提到的批量展示方法可能涉及将数据分组或分批次加载到视图中。这样可以减少一次性渲染的数据量,从而提升应用的响应速度和用户体验。在Angular中,可以利用指令(directives)和管道(pipes)来实现数据的分批处理和显示。 6. 关联介绍文章: 提供的文章链接为读者提供了更深入的理解和实操步骤。这可能是关于如何配置xlsx.js在Angular项目中使用、如何读取Excel文件中的数据、如何优化和展示这些数据的详细指南。读者应根据该文章所提供的知识和示例代码,来实现上述功能。 7. 文件名称列表: "excel"这一词汇表明,压缩包可能包含一些与Excel文件处理相关的文件或示例代码。这可能包括与xlsx.js集成的Angular组件代码、服务代码或者用于展示数据的模板代码。在实际开发过程中,开发者需要将这些文件或代码片段正确地集成到自己的Angular项目中。 总结而言,本文将指导开发者如何在Angular项目中集成xlsx.js来处理Excel文件的读取,以及如何优化显示大量数据的技术。通过阅读关联介绍文章和实际操作示例代码,开发者可以掌握从后端加载数据、通过xlsx.js解析数据以及在前端高效展示数据的技术要点。这对于开发涉及复杂数据交互的Web应用尤为重要,特别是在需要处理大量数据时。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南

![【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南](https://www.vandyke.com/images/screenshots/securecrt/scrt_94_windows_session_configuration.png) 参考资源链接:[SecureCRT设置代码关键字高亮教程](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44db0?spm=1055.2635.3001.10343) # 1. SecureCRT简介与高亮功能概述 SecureCRT是一款广泛应用于IT行业的远程终端仿真程序,支持
recommend-type

如何设计一个基于FPGA的多功能数字钟,实现24小时计时、手动校时和定时闹钟功能?

设计一个基于FPGA的多功能数字钟涉及数字电路设计、时序控制和模块化编程。首先,你需要理解计时器、定时器和计数器的概念以及如何在FPGA平台上实现它们。《大连理工数字钟设计:模24计时器与闹钟功能》这份资料详细介绍了实验报告的撰写过程,包括设计思路和实现方法,对于理解如何构建数字钟的各个部分将有很大帮助。 参考资源链接:[大连理工数字钟设计:模24计时器与闹钟功能](https://wenku.csdn.net/doc/5y7s3r19rz?spm=1055.2569.3001.10343) 在硬件设计方面,你需要准备FPGA开发板、时钟信号源、数码管显示器、手动校时按钮以及定时闹钟按钮等
recommend-type

Argos客户端开发流程及Vue配置指南

资源摘要信息:"argos-client:客户端" 1. Vue项目基础操作 在"argos-client:客户端"项目中,首先需要进行项目设置,通过运行"yarn install"命令来安装项目所需的依赖。"yarn"是一个流行的JavaScript包管理工具,它能够管理项目的依赖关系,并将它们存储在"package.json"文件中。 2. 开发环境下的编译和热重装 在开发阶段,为了实时查看代码更改后的效果,可以使用"yarn serve"命令来编译项目并开启热重装功能。热重装(HMR, Hot Module Replacement)是指在应用运行时,替换、添加或删除模块,而无需完全重新加载页面。 3. 生产环境的编译和最小化 项目开发完成后,需要将项目代码编译并打包成可在生产环境中部署的版本。运行"yarn build"命令可以将源代码编译为最小化的静态文件,这些文件通常包含在"dist/"目录下,可以部署到服务器上。 4. 单元测试和端到端测试 为了确保项目的质量和可靠性,单元测试和端到端测试是必不可少的。"yarn test:unit"用于运行单元测试,这是测试单个组件或函数的测试方法。"yarn test:e2e"用于运行端到端测试,这是模拟用户操作流程,确保应用程序的各个部分能够协同工作。 5. 代码规范与自动化修复 "yarn lint"命令用于代码的检查和风格修复。它通过运行ESLint等代码风格检查工具,帮助开发者遵守预定义的编码规范,从而保持代码风格的一致性。此外,它也能自动修复一些可修复的问题。 6. 自定义配置与Vue框架 由于"argos-client:客户端"项目中提到的Vue标签,可以推断该项目使用了Vue.js框架。Vue是一个用于构建用户界面的渐进式JavaScript框架,它允许开发者通过组件化的方式构建复杂的单页应用程序。在项目的自定义配置中,可能需要根据项目需求进行路由配置、状态管理(如Vuex)、以及与后端API的集成等。 7. 压缩包子文件的使用场景 "argos-client-master"作为压缩包子文件的名称,表明该项目可能还涉及打包发布或模块化开发。在项目开发中,压缩包子文件通常用于快速分发和部署代码,或者是在模块化开发中作为依赖进行引用。使用压缩包子文件可以确保项目的依赖关系清晰,并且方便其他开发者快速安装和使用。 通过上述内容的阐述,我们可以了解到在进行"argos-client:客户端"项目的开发时,需要熟悉的一系列操作,包括项目设置、编译和热重装、生产环境编译、单元测试和端到端测试、代码风格检查和修复,以及与Vue框架相关的各种配置。同时,了解压缩包子文件在项目中的作用,能够帮助开发者高效地管理和部署代码。