面波频散曲线反演速度模型 遗传算法C++算法
时间: 2023-10-17 14:05:20 浏览: 156
这是用C++写的遗传算法,参考《智能算法 30案例分析 第2版》一书,包含TSP、LQR控制器、结合量子算法.zip
面波频散曲线反演速度模型可以使用遗传算法进行优化。遗传算法是一种模拟自然进化的优化算法,通过模拟生物进化的过程,逐步优化目标函数。下面是一个使用遗传算法进行面波频散曲线反演速度模型的C++算法实现:
```cpp
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
// 计算模型预测的频散曲线
std::vector<double> computeModelDispersionCurve(std::vector<double>& velocityModel, double frequency) {
std::vector<double> dispersionCurve;
// 计算频散曲线
for (double velocity : velocityModel) {
double wavenumber = 2 * M_PI * frequency / velocity;
dispersionCurve.push_back(wavenumber);
}
return dispersionCurve;
}
// 计算观测的频散曲线
std::vector<double> computeObservedDispersionCurve() {
std::vector<double> dispersionCurve = {0.1, 0.2, 0.3, 0.4, 0.5};
return dispersionCurve;
}
// 计算适应度函数(最小二乘误差)
double fitnessFunction(std::vector<double>& observedDispersionCurve, std::vector<double>& modelDispersionCurve) {
if (observedDispersionCurve.size() != modelDispersionCurve.size()) {
std::cerr << "频散曲线长度不一致" << std::endl;
return std::numeric_limits<double>::infinity();
}
double error = 0.0;
for (int i = 0; i < observedDispersionCurve.size(); i++) {
error += std::pow(observedDispersionCurve[i] - modelDispersionCurve[i], 2);
}
return error;
}
// 遗传算法进行频散曲线反演
std::vector<double> inversion(std::vector<double>& observedDispersionCurve, double frequency, int populationSize, int maxGenerations) {
// 初始化种群
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<double> dist(1.0, 5.0);
std::vector<std::vector<double>> population(populationSize);
for (int i = 0; i < populationSize; i++) {
for (int j = 0; j < observedDispersionCurve.size(); j++) {
population[i].push_back(dist(gen));
}
}
// 进化过程
for (int generation = 0; generation < maxGenerations; generation++) {
// 计算适应度
std::vector<double> fitnessValues(populationSize);
for (int i = 0; i < populationSize; i++) {
std::vector<double> modelDispersionCurve = computeModelDispersionCurve(population[i], frequency);
fitnessValues[i] = fitnessFunction(observedDispersionCurve, modelDispersionCurve);
}
// 选择操作
std::vector<std::vector<double>> newPopulation(populationSize);
for (int i = 0; i < populationSize; i++) {
int parent1 = std::min_element(fitnessValues.begin(), fitnessValues.end()) - fitnessValues.begin();
int parent2 = parent1;
while (parent2 == parent1) {
parent2 = std::min_element(fitnessValues.begin(), fitnessValues.end()) - fitnessValues.begin();
}
// 交叉操作
std::uniform_int_distribution<int> crossoverPoint(1, observedDispersionCurve.size() - 1);
int crossover = crossoverPoint(gen);
for (int j = 0; j < crossover; j++) {
newPopulation[i].push_back(population[parent1][j]);
}
for (int j = crossover; j < observedDispersionCurve.size(); j++) {
newPopulation[i].push_back(population[parent2][j]);
}
// 变异操作
std::uniform_real_distribution<double> mutationValue(0.9, 1.1);
std::uniform_int_distribution<int> mutationPosition(0, observedDispersionCurve.size() - 1);
for (int j = 0; j < observedDispersionCurve.size(); j++) {
if (mutationValue(gen) < 0.1) {
newPopulation[i][mutationPosition(gen)] = dist(gen);
}
}
}
// 更新种群
population = newPopulation;
}
// 选择最佳个体
double bestFitness = std::numeric_limits<double>::infinity();
int bestIndividual = -1;
for (int i = 0; i < populationSize; i++) {
std::vector<double> modelDispersionCurve = computeModelDispersionCurve(population[i], frequency);
double fitness = fitnessFunction(observedDispersionCurve, modelDispersionCurve);
if (fitness < bestFitness) {
bestFitness = fitness;
bestIndividual = i;
}
}
return population[bestIndividual];
}
int main() {
// 计算观测的频散曲线
std::vector<double> observedDispersionCurve = computeObservedDispersionCurve();
// 进行频散曲线反演
double frequency = 10.0;
int populationSize = 100;
int maxGenerations = 100;
std::vector<double> velocityModel = inversion(observedDispersionCurve, frequency, populationSize, maxGenerations);
// 输出速度模型
std::cout << "速度模型: ";
for (double velocity : velocityModel) {
std::cout << velocity << " ";
}
std::cout << std::endl;
return 0;
}
```
在这个示例代码中,我们首先定义了计算模型预测的频散曲线的函数 `computeModelDispersionCurve` 和计算观测的频散曲线的函数 `computeObservedDispersionCurve`,以及计算适应度函数(最小二乘误差)的函数 `fitnessFunction`。然后,在 `inversion` 函数中,我们使用遗传算法进行频散曲线反演。在遗传算法的进化过程中,我们进行选择操作、交叉操作和变异操作,并更新种群。最后,选择最佳个体作为最终的速度模型。
在 `main` 函数中,我们调用 `computeObservedDispersionCurve` 函数计算观测的频散曲线。然后,调用 `inversion` 函数进行频散曲线反演,并输出速度模型。
请注意,这只是一个基本的示例代码,实际的面波频散曲线反演可能涉及到更复杂的算法和参数设置。你可以根据你的具体需求,对这个算法进行适当的修改和扩展。
阅读全文