多层感知机pytorch
时间: 2023-11-08 17:02:58 浏览: 108
好的,关于多层感知机在PyTorch中的实现,你可以按照以下步骤进行:
1. 导入必要的库和模块:
```
import torch
import torch.nn as nn
```
2. 定义网络结构:
```
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.fc1 = nn.Linear(输入层大小, 隐藏层大小)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(隐藏层大小, 输出层大小)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
```
3. 实例化模型,并定义损失函数和优化器:
```
model = MLP()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=学习率)
```
4. 训练模型:
```
for epoch in range(训练轮数):
for data in 数据加载器:
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
阅读全文