java雪花算法生成18位id
时间: 2023-09-02 16:10:58 浏览: 249
雪花算法是一种生成全局唯一ID的算法,常用于分布式系统中。这种算法的实现基于时间戳、机器ID和序列号,以保证生成的ID在分布式环境下的唯一性。
要生成一个18位的雪花算法ID,可以按照以下步骤进行:
1. 定义一个起始时间戳,例如可以取当前时间的起始时间戳(如2022年1月1日),将其转换为毫秒级的时间戳。
2. 定义一个机器ID,可以根据实际情况分配一个唯一的机器ID,通常可以使用服务器的IP地址或其他唯一标识符。
3. 定义一个序列号,表示同一毫秒内生成的ID的序号,从0开始递增。
4. 在生成ID时,先获取当前时间戳的毫秒级表示。
5. 将时间戳左移5位,腾出5位给机器ID使用。
6. 将机器ID左移13位,腾出5位给序列号使用。
7. 将当前时间戳、机器ID和序列号进行按位或操作,得到最终的ID值。
8. 将ID转换为字符串,并补齐到18位长度。
需要注意的是,18位的ID长度可能会超过Java的long类型的表示范围,因此可以考虑使用字符串来表示ID。
请注意,这只是一种示例的实现方式,你可以根据自己的需求进行调整和改进。
相关问题
java 雪花算法生成9位id
雪花算法是一种分布式唯一 ID 生成算法,可以生成唯一的、有序的、可排序的、高并发的 ID。以下是 Java 实现的 9 位雪花算法生成 ID 的示例代码:
```java
public class SnowflakeIdGenerator {
private static final long START_STAMP = 1577808000000L; // 2020-01-01 00:00:00
private static final long SEQUENCE_BITS = 4L;
private static final long WORKER_ID_BITS = 5L;
private static final long MAX_SEQUENCE = ~(-1L << SEQUENCE_BITS);
private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);
private static final long WORKER_ID_SHIFT = SEQUENCE_BITS;
private static final long TIMESTAMP_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;
private volatile long lastTimestamp = -1L;
private volatile long sequence = 0L;
private final long workerId;
public SnowflakeIdGenerator(long workerId) {
if (workerId > MAX_WORKER_ID || workerId < 0) {
throw new IllegalArgumentException("Worker ID must be between 0 and " + MAX_WORKER_ID);
}
this.workerId = workerId;
}
public synchronized long nextId() {
long currentTimestamp = System.currentTimeMillis();
if (currentTimestamp < lastTimestamp) {
throw new RuntimeException("Clock moved backwards! Refusing to generate ID");
}
if (currentTimestamp == lastTimestamp) {
sequence = (sequence + 1) & MAX_SEQUENCE;
if (sequence == 0) {
currentTimestamp = nextTimestamp(currentTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = currentTimestamp;
return ((currentTimestamp - START_STAMP) << TIMESTAMP_SHIFT) |
(workerId << WORKER_ID_SHIFT) |
sequence;
}
private long nextTimestamp(long currentTimestamp) {
long timestamp = System.currentTimeMillis();
while (timestamp <= currentTimestamp) {
timestamp = System.currentTimeMillis();
}
return timestamp;
}
}
```
此代码中,我们使用一个 long 类型的变量来表示生成的 ID,其中,前 41 位是时间戳(毫秒级),接着的 5 位是机器 ID,最后的 4 位是序列号。根据雪花算法的规则,序列号是每毫秒内的计数器,最大值为 15,超过则等待下一毫秒再生成 ID。
使用此类生成 9 位 ID,我们可以将机器 ID 的位数减少为 4,序列号的位数减少为 1,时间戳的起点可以设为 2020-01-01 00:00:00,代码如下:
```java
public class NineDigitsSnowflakeIdGenerator {
private static final long START_STAMP = 1577808000000L; // 2020-01-01 00:00:00
private static final long SEQUENCE_BITS = 1L;
private static final long WORKER_ID_BITS = 4L;
private static final long MAX_SEQUENCE = ~(-1L << SEQUENCE_BITS);
private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);
private static final long WORKER_ID_SHIFT = SEQUENCE_BITS;
private static final long TIMESTAMP_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;
private volatile long lastTimestamp = -1L;
private volatile long sequence = 0L;
private final long workerId;
public NineDigitsSnowflakeIdGenerator(long workerId) {
if (workerId > MAX_WORKER_ID || workerId < 0) {
throw new IllegalArgumentException("Worker ID must be between 0 and " + MAX_WORKER_ID);
}
this.workerId = workerId;
}
public synchronized long nextId() {
long currentTimestamp = System.currentTimeMillis();
if (currentTimestamp < lastTimestamp) {
throw new RuntimeException("Clock moved backwards! Refusing to generate ID");
}
if (currentTimestamp == lastTimestamp) {
sequence = (sequence + 1) & MAX_SEQUENCE;
if (sequence == 0) {
currentTimestamp = nextTimestamp(currentTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = currentTimestamp;
return ((currentTimestamp - START_STAMP) << TIMESTAMP_SHIFT) |
(workerId << WORKER_ID_SHIFT) |
sequence;
}
private long nextTimestamp(long currentTimestamp) {
long timestamp = System.currentTimeMillis();
while (timestamp <= currentTimestamp) {
timestamp = System.currentTimeMillis();
}
return timestamp;
}
}
```
java雪花算法生成19位id
根据引用和引用,Java中的雪花算法(Snowflake Algorithm)可以生成唯一的ID。根据引用的运行结果,雪花算法生成的ID为19位。因此,Java雪花算法可以生成19位的唯一ID。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [实现高性能ID生成器:详解Java雪花算法](https://blog.csdn.net/weixin_46780832/article/details/129399062)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [实现高性能分布式 ID 生成器:Java 雪花算法详解](https://blog.csdn.net/u011374856/article/details/129857402)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文