INdex=[]; n=[]; for i=1:k A=NWP_cluster{i}; index=[]; for j=1:size(A,1) for x=1:size(A,2) index(j,x)=sum((A(j,:)-A(x,:)).^2)^0.5; end end INdex(k)=sum(sum(index))/(size(A,1)*size(A,2)-1)/2; n(k)=size(A,1)*size(A,2); end compactness=sum(INdex)/sum(n); disp(['紧致度为:',num2str(compactness)]) %% 计算欧氏距离 Dis=[]; for i=1:k Data=NWP_cluster{i}; oushi_dis=[]; Center=center(i,:); for j=1:size(Data,1) oushi_dis(j)=sum((Data(j,:)-Center).^2)^0.5; end Dis{i}=oushi_dis; end L=[]; first_label=[]; for i=1:k [~,location]=sort(Dis{i},'ascend'); Label=Label_cluster{i}; Label=Label(location); L{i}=Label(1:ceil(length(Label))*0.5); first_label=[first_label;Label_cluster{i}]; end %% 二次聚类 double_data=p_train([L{1};L{2};L{3}],:); Double_data=data([L{1};L{2};L{3}],:); double_power=power_date([L{1};L{2};L{3}],:); %% 聚类 k=3; [label,center]=FCM(double_data',k); %% double_label1=label(1:length(L{1})); double_label2=label(1+length(L{1}):length(L{1})+length(L{2})); double_label3=label(1+length(L{1})+length(L{2}):length(L{1})+length(L{2})+length(L{3})); double_label=[{double_label1} {double_label2} {double_label3}];%{double_label4} {double_label5} {double_label6} %% 找出同一类的样本 NWP_cluster=[]; cluster_power=[]; for i=1:k NWP_cluster{i}=double_data(find(label==i),:); cluster_power{i}=double_power(find(label==i),:); end NWP_power=[]; for i=1:k NWP_power{i}=[Double_data(find(label==i),:) double_power(find(label==i),:)]; end for i=1:k str=['NWP_power',num2str(i),'.csv']; csvwrite(str,NWP_power{i});

时间: 2024-04-19 10:26:34 浏览: 13
这部分代码是根据之前的聚类结果,对同一类的样本进行二次聚类。首先,你计算了每个聚类类别的紧致度(compactness),通过计算样本之间的距离来衡量。然后,你计算了每个样本与其所属类别中心点的欧氏距离,并将结果存储在`Dis`中。接下来,你根据欧氏距离排序,选择每个类别中距离最小的一部分样本作为新的标签,并将所有标签存储在`L`和`first_label`中。 在进行二次聚类之前,你将选取的样本和相应的数据集存储在`double_data`、`Double_data`和`double_power`中。然后,你再次使用模糊C均值聚类算法对`double_data`进行聚类,并将结果存储在`label`和`center`中。 接下来,你根据二次聚类的结果将样本标签分为不同的类别,并将结果存储在`double_label`中。 最后,你根据聚类结果将二次聚类后的样本和相应的数据集存储在`NWP_cluster`、`cluster_power`和`NWP_power`中,并将它们分别写入名为`NWP_power1.csv`、`NWP_power2.csv`和`NWP_power3.csv`的CSV文件中。
相关问题

%% 计算指标 INdex=[]; n=[]; for i=1:k A=NWP_cluster{i}; index=[]; for j=1:size(A,1) for x=1:size(A,2) index(j,x)=sum((A(j,:)-A(x,:)).^2)^0.5; end end INdex(k)=sum(sum(index))/(size(A,1)*size(A,2)-1)/2; n(k)=size(A,1)*size(A,2); end compactness=sum(INdex)/sum(n); disp(['紧致度为:',num2str(compactness)]) %% 找出原始不聚类的训练测试集 Label_test_first=[]; first_label=[]; Label_1=[L{1}' L{2}' L{3}']; for i=1:k Label=find(label==i); A=Label_1(find(label==i)); first_label{i}=Label(1+ceil(length(A)*5/6):end); A(1:ceil(length(A)*5/6))=[]; Label_test_first=[Label_test_first A]; end X=1:size(data,1); X(Label_test_first)=[]; Train_NWP_power_zhijie =[data(X,:) power_date(X,:)]; Test_NWP_power_zhijie =[data(Label_test_first,:) power_date(Label_test_first,:)]; csvwrite('不聚类的训练集.csv',Train_NWP_power_zhijie); csvwrite('不聚类的测试集.csv',Test_NWP_power_zhijie); %% 找出一重聚类结果的训练测试集 first_L1=[]; first_L2=[]; first_L3=[]; for i=1:k B=first_label{i}; L1_label=B(find(B<=length(L{1}))); L2_label=B(find(B<=length([L{1}' L{2}']))); L3_label=B(~ismember(B,L2_label)); L2_label=L2_label(~ismember(L2_label,L1_label)); first_L1=[first_L1;L1_label]; first_L2=[first_L2;L2_label]; first_L3=[first_L3;L3_label]; end first_cluster_test_1=Label_1(first_L1); first_cluster_test_2=Label_1(first_L2); first_cluster_test_3=Label_1(first_L3); first_cluster_train_1=Label_cluster{1}(~ismember(Label_cluster{1},first_cluster_test_1)); first_cluster_train_2=Label_cluster{2}(~ismember(Label_cluster{2},first_cluster_test_2)); first_cluster_train_3=Label_cluster{3}(~ismember(Label_cluster{3},first_cluster_test_3)); %% 划分出训练测试集 NWP_power_test_1=[data(first_cluster_test_1,:) power_date(first_cluster_test_1,:)]; NWP_power_test_2=[data(first_cluster_test_2,:) power_date(first_cluster_test_2,:)]; NWP_power_test_3=[data(first_cluster_test_3,:) power_date(first_cluster_test_3,:)]; NWP_power_train_1=[data(first_cluster_train_1,:) power_date(first_cluster_train_1,:)]; NWP_power_train_2=[data(first_cluster_train_2,:) power_date(first_cluster_train_2,:)]; NWP_power_train_3=[data(first_cluster_train_3,:) power_date(first_cluster_train_3,:)]; NWP_power_test=[{NWP_power_test_1} {NWP_power_test_2} {NWP_power_test_3}]; NWP_power_train=[{NWP_power_train_1} {NWP_power_train_2} {NWP_power_train_3}]; for i=1:k str_test=['NWP_power_test_',num2str(i),'.csv']; csvwrite(str_test,NWP_power_test{i}); str_train=['NWP_power_train_',num2str(i),'.csv']; csvwrite(str_train,NWP_power_train{i}); end

这部分代码是对聚类结果进行指标计算,并根据聚类结果将原始数据集划分为训练集和测试集。 首先,你计算了每个聚类类别的紧致度(compactness),通过计算样本之间的距离来衡量。然后,你将原始数据集中未被聚类的样本标签存储在`Label_test_first`中,并将剩余的样本作为不聚类的训练集和测试集,分别存储在`Train_NWP_power_zhijie`和`Test_NWP_power_zhijie`中。 接下来,你将一重聚类结果中每个类别的样本标签分别存储在`first_L1`、`first_L2`和`first_L3`中,并根据这些标签将一重聚类结果划分为训练集和测试集。训练集中的样本存储在`first_cluster_train_1`、`first_cluster_train_2`和`first_cluster_train_3`中,测试集中的样本存储在`first_cluster_test_1`、`first_cluster_test_2`和`first_cluster_test_3`中。 最后,你根据训练集和测试集的标签将数据集划分为不同的类别,并将每个类别的数据分别存储在`NWP_power_train`和`NWP_power_test`中,并将它们分别写入名为`NWP_power_train_1.csv`、`NWP_power_train_2.csv`、`NWP_power_train_3.csv`、`NWP_power_test_1.csv`、`NWP_power_test_2.csv`和`NWP_power_test_3.csv`的CSV文件中。

data00=data m,n = np.shape(data00) a = np.array(data00) Data00 = a[1:m,2:n] Data00 = Data00.astype(np.float64) Power = Data00[:,13] Power_train = Power[0:96] P_min = np.min(Power_train) P_gap = np.max(Power_train)-np.min(Power_train) Power_uni = (Power-P_min)/P_gap # 提取imfs和剩余信号res emd = EMD() emd.emd(Power_uni) imfs, res = emd.get_imfs_and_residue() N = len(imfs) P_H = np.sum(imfs[0:6,:],axis=0) P_M = np.sum(imfs[6:12,:],axis=0) P_L = res P_H =np.expand_dims(P_H,axis=1) P_M =np.expand_dims(P_M,axis=1) P_L =np.expand_dims(P_L,axis=1) Nwp = Data00[:,0:7] Nwp_train = Nwp[0:96] N_min = np.min(Nwp_train,axis=0) N_gap = np.max(Nwp_train,axis=0)-np.min(Nwp_train,axis=0) Nwp_uni = (Nwp-N_min)/N_gap#(N,7) Weather = Data00[:,7:13] Weather_train = Weather[0:96] W_min = np.min(Weather_train,axis=0) W_gap = np.max(Weather_train,axis=0)-np.min(Weather_train,axis=0) Weather_uni = (Weather-W_min)/W_gap#(N,6) 优化代码

以下是部分代码的优化建议: 1. 对于以下代码段: ``` a = np.array(data00) Data00 = a[1:m,2:n] ``` 可以合并为一行: ``` Data00 = np.array(data00)[1:m,2:n] ``` 2. 对于以下代码段: ``` P_H = np.sum(imfs[0:6,:],axis=0) P_M = np.sum(imfs[6:12,:],axis=0) P_L = res P_H =np.expand_dims(P_H,axis=1) P_M =np.expand_dims(P_M,axis=1) P_L =np.expand_dims(P_L,axis=1) ``` 可以使用 `np.newaxis` 替代 `np.expand_dims` 来实现: ``` P_H = np.sum(imfs[0:6,:],axis=0)[:, np.newaxis] P_M = np.sum(imfs[6:12,:],axis=0)[:, np.newaxis] P_L = res[:, np.newaxis] ``` 3. 对于以下代码段: ``` N_min = np.min(Nwp_train,axis=0) N_gap = np.max(Nwp_train,axis=0)-np.min(Nwp_train,axis=0) Nwp_uni = (Nwp-N_min)/N_gap#(N,7) ``` 可以使用 `np.ptp` 函数(peak-to-peak)来计算最大值和最小值的差: ``` N_min = np.min(Nwp_train,axis=0) N_gap = np.ptp(Nwp_train,axis=0) Nwp_uni = (Nwp-N_min)/N_gap#(N,7) ``` 4. 对于以下代码段: ``` Weather = Data00[:,7:13] Weather_train = Weather[0:96] W_min = np.min(Weather_train,axis=0) W_gap = np.max(Weather_train,axis=0)-np.min(Weather_train,axis=0) Weather_uni = (Weather-W_min)/W_gap#(N,6) ``` 可以使用与第三个优化建议类似的方法: ``` Weather = Data00[:,7:13] Weather_train = Weather[0:96] W_min = np.min(Weather_train,axis=0) W_gap = np.ptp(Weather_train,axis=0) Weather_uni = (Weather-W_min)/W_gap#(N,6) ``` 当然,以上只是一些简单的优化建议,具体的优化效果还需要根据实际情况进行评估。

相关推荐

最新推荐

recommend-type

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl.zip

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl
recommend-type

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)
recommend-type

基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

全球国家列表和国家代码最详细版本

全球国家列表和国家代码最全最详细版本,国家country,code
recommend-type

grpcio-1.47.0-cp37-cp37m-manylinux_2_17_aarch64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。