TD3的Python代码
时间: 2024-09-26 15:00:25 浏览: 42
TD3:作者的TD3的PyTorch实施,用于OpenAI体育馆任务
TD3 ( Twin Delayed Deep Deterministic Policy Gradients) 是一种改进版的深度强化学习算法,它通过延迟策略更新和目标网络的更新来提高性能。以下是 TD3 的基本 Python 代码框架示例:
```python
import torch
from torch import nn
class Actor(nn.Module):
# ... (Actor网络结构定义)
class Critic(nn.Module):
# ... (Critic网络结构定义)
class TD3Agent:
def __init__(self, actor, critic_1, critic_2, tau=0.005, gamma=0.99):
self.actor = actor
self.critic_1 = critic_1
self.critic_2 = critic_2
self.tau = tau
self.gamma = gamma
self.target_actor = actor.clone() # 延迟更新的目标actor
self.target_critic_1 = critic_1.clone()
self.target_critic_2 = critic_2.clone()
# ... (其他函数如选择动作、更新步骤等)
def update_agent(obs, action, reward, next_obs, done):
# 更新critics
with torch.no_grad():
target_action = self.target_actor(next_obs)
target_q_values = min(self.target_critic_1(next_obs, target_action),
self.target_critic_2(next_obs, target_action))
expected_q_value = reward + (1 - done) * self.gamma * target_q_values
current_q_values = self.critic_1(obs, action)
critic_loss = F.mse_loss(current_q_values, expected_q_value.unsqueeze(1))
# 更新actor
policy_gradient = self.actor(obs).detach().mean(dim=0)
actor_loss = -self.critic_1(obs, policy_gradient).mean()
# 更新target networks
for param, target_param in zip(self.critic_1.parameters(), self.target_critic_1.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.critic_2.parameters(), self.target_critic_2.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
# 打印损失并优化
agent.optimizer.zero_grad()
(actor_loss + critic_loss).backward()
agent.optimizer.step()
# 使用示例
agent = TD3Agent(actor, critic_1, critic_2)
obs = env.reset()
while True:
action = agent.select_action(obs)
obs, reward, done, _ = env.step(action)
update_agent(obs, action, reward, obs, done)
```
请注意,这只是一个简化的例子,实际应用中还需要处理device迁移、添加噪声、经验回放缓冲区以及其他的训练细节。
阅读全文