TD3算法求解HJB方程的代码实现
时间: 2023-05-13 08:05:31 浏览: 413
以下是一个简单的TD3算法求解HJB方程的代码实现:
```python
import numpy as np
# 定义HJB方程
def HJB(u, x, t):
return -0.5 * u ** 2 + np.sin(x) + t
# 定义TD3算法
def TD3(x0, t0, u0, alpha, gamma, n_iter):
x = x0
t = t0
u = u0
for i in range(n_iter):
u_old = u
u = u_old - alpha * (HJB(u_old, x, t) - gamma * HJB(u_old, x, t + 1))
x = x + u
t = t + 1
return u
# 测试
x0 = 0
t0 = 0
u0 = 0
alpha = 0.1
gamma = 0.9
n_iter = 100
u_star = TD3(x0, t0, u0, alpha, gamma, n_iter)
print("最优控制:", u_star)
```
注意:这只是一个简单的实现,实际应用中可能需要更复杂的算法和技巧。
相关问题
matlab写TD3算法优化PID参数代码
好的,下面是一个使用MATLAB实现TD3算法优化PID参数的简单示例代码:
```
%% 确定状态和动作空间
% 状态空间
state_min = -10;
state_max = 10;
% 动作空间
action_min = [0, 0, 0];
action_max = [1, 1, 1];
%% 定义Actor和Critic神经网络
% Actor神经网络
actor = rlSimpleNeuralNetworkRepresentation([state_min state_max], ...
[action_min; action_max]);
% Critic神经网络
critic = rlValueRepresentation([state_min state_max], ...
[action_min; action_max]);
%% 制定奖励函数
% 这里的奖励函数可以根据具体的控制目标进行修改
rewardFcn = @(action,state) -abs(state);
%% 训练Actor和Critic神经网络
% 创建环境模型
env = rlFunctionEnv(@(action,state) PIDControl(action, state), ...
@(action,state) state, ...
1, 3);
% 创建TD3智能体
agent = rlTD3Agent(actor, critic);
% 设置训练参数
maxEpisodes = 1000;
maxSteps = 100;
trainOpts = rlTrainingOptions('MaxEpisodes', maxEpisodes, ...
'MaxStepsPerEpisode', maxSteps, ...
'ScoreAveragingWindowLength', 50, ...
'Verbose', false);
% 训练智能体
trainingStats = train(agent, env, trainOpts);
%% 参数优化
% 使用Actor神经网络输出的控制参数进行PID控制器的调节
% 这里的PIDControl函数是一个自定义的函数,用于进行PID控制
function [nextstate, reward, isdone] = PIDControl(action, state)
% 读取PID控制器的参数
Kp = action(1);
Ki = action(2);
Kd = action(3);
% 计算控制信号
u = Kp * state + Ki * sum(state) + Kd * diff(state);
% 更新状态
nextstate = state + u;
% 计算奖励
reward = -abs(nextstate);
% 判断是否达到目标状态
isdone = abs(nextstate) < 0.1;
end
```
需要注意的是,这只是一个简单的示例代码,实际应用中需要根据具体的问题进行修改。另外,这里的PID控制器是一个简单的一阶控制器,如果需要使用更高阶的控制器,需要进行相应的修改。
td3算法的matlab代码
TD3算法是一种强化学习算法,主要用于解决连续控制问题,它在深度强化学习中具有很高的实用性。下面是一个简单的MATLAB实现:
```
% TD3算法实现
% 请注意,这是一个简单的代码示例,可能需要根据实际情况进行修改
% 环境初始化
env = rlPredefinedEnv('Pendulum-Continuous');
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
% 神经网络参数初始化
actorNetwork = [
imageInputLayer([obsInfo.Dimension(1) 1 1],'Normalization','none','Name','observation')
fullyConnectedLayer(256,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(256,'Name','fc2')
reluLayer('Name','relu2')
fullyConnectedLayer(actInfo.Dimension(1),'Name','actorOutput')
tanhLayer('Name','actorTanh')];
criticNetwork = [
imageInputLayer([obsInfo.Dimension(1) 1 1],'Normalization','none','Name','observation')
fullyConnectedLayer(256,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(256,'Name','fc2')
reluLayer('Name','relu2')
fullyConnectedLayer(1,'Name','criticOutput')];
actorOpts = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
criticOpts = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'observation'},'Action',{'actorTanh'},actorOpts);
critic = rlValueRepresentation(criticNetwork,obsInfo,criticOpts,'Observation',{'observation'});
% TD3算法参数初始化
agentOpts = rlTD3AgentOptions;
agentOpts.SampleTime = 0.01;
agentOpts.DiscountFactor = 0.99;
agentOpts.ExperienceBufferLength = 1e6;
agentOpts.TargetSmoothFactor = 5e-3;
agentOpts.NoiseOptions.Variance = 0.2;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;
agentOpts.NoiseOptions.StepSize = 0.01;
% 创建TD3代理
agent = rlTD3Agent(actor,critic,agentOpts);
% 训练代理
trainOpts = rlTrainingOptions;
trainOpts.MaxEpisodes = 500;
trainOpts.MaxStepsPerEpisode = ceil(env.Ts/env.StepSize);
trainOpts.ScoreAveragingWindowLength = 10;
trainOpts.StopTrainingCriteria = 'AverageReward';
trainOpts.StopTrainingValue = -100;
trainOpts.SaveAgentCriteria = 'EpisodeReward';
trainOpts.SaveAgentValue = -100;
trainOpts.Plots = 'training-progress';
trainOpts.Verbose = false;
% 训练代理
trainingStats = train(agent,env,trainOpts);
% 测试代理
simOptions.ResetFcn = @(in) setVariable(env,in,env.ResetFcn());
simOptions.StopTime = 20;
experience = sim(env,agent,simOptions);
```
阅读全文