DBSCAN算法python代码
时间: 2024-03-11 10:42:35 浏览: 84
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,它可以自动发现具有相似密度的数据点,并将它们划分为不同的簇。下面是一个简单的DBSCAN算法的Python代码示例:
```python
from sklearn.cluster import DBSCAN
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
# 生成示例数据
X, y = make_moons(n_samples=200, noise=0.05)
# 创建DBSCAN对象
dbscan = DBSCAN(eps=0.3, min_samples=5)
# 拟合数据
dbscan.fit(X)
# 获取聚类结果
labels = dbscan.labels_
# 绘制聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels)
plt.show()
```
上述代码中,首先使用`make_moons`函数生成了一个月亮形状的示例数据集。然后创建了一个DBSCAN对象,并通过`fit`方法拟合数据。最后,使用`labels_`属性获取每个数据点的聚类标签,并使用`scatter`函数将数据点按照聚类结果进行可视化。
相关问题
dbscan算法 python代码
以下是 DBSCAN 聚类算法的 Python 代码实现:
```python
from sklearn.neighbors import NearestNeighbors
import numpy as np
class DBSCAN:
def __init__(self, eps=0.5, min_samples=5):
self.eps = eps
self.min_samples = min_samples
self.core_indices_ = None
self.labels_ = None
def fit(self, X):
n_samples = X.shape[0]
self.core_indices_ = np.zeros(n_samples, dtype=bool)
nbrs = NearestNeighbors(n_neighbors=self.min_samples, metric='euclidean').fit(X)
distances, indices = nbrs.kneighbors(X)
core_distances = np.zeros(n_samples)
for i in range(n_samples):
core_distances[i] = distances[i, self.min_samples - 1]
if core_distances[i] <= self.eps:
self.core_indices_[i] = True
labels = np.zeros(n_samples)
current_label = 1
for i in range(n_samples):
if not self.core_indices_[i]:
continue
if labels[i] != 0:
continue
labels[i] = current_label
neighbors = indices[i, 1:].tolist()
while len(neighbors) > 0:
j = neighbors.pop(0)
if labels[j] == -1:
labels[j] = current_label
if labels[j] != 0:
continue
labels[j] = current_label
if self.core_indices_[j]:
neighbors += indices[j, 1:].tolist()
current_label += 1
self.labels_ = labels
return self.labels_
```
该算法实现了 DBSCAN 算法,其中 `eps` 和 `min_samples` 是 DBSCAN 算法的两个超参数,分别表示邻域半径和最小样本数。在 `fit` 方法中,首先计算每个样本点的核心距离,然后确定核心点的索引,通过 BFS(广度优先搜索)遍历所有核心点的邻居,将它们分配到对应的聚类中,并标记为已访问。最终返回所有样本点的聚类标签。
DBSCAN算法 python代码
以下是一个简单的Python实现DBSCAN算法的代码示例:
```python
import numpy as np
class DBSCAN:
def __init__(self, eps=0.5, min_samples=5):
self.eps = eps
self.min_samples = min_samples
def fit(self, X):
self.labels_ = np.zeros(len(X))
C = 0
for i in range(len(X)):
if self.labels_[i] != 0:
continue
neighbors = self.get_neighbors(X, i)
if len(neighbors) < self.min_samples:
self.labels_[i] = -1 # noise point
else:
C += 1
self.expand_cluster(X, i, neighbors, C)
def get_neighbors(self, X, i):
d = np.sqrt(np.sum((X - X[i]) ** 2, axis=1))
return np.where(d <= self.eps)[0]
def expand_cluster(self, X, i, neighbors, C):
self.labels_[i] = C
for j in neighbors:
if self.labels_[j] == -1:
self.labels_[j] = C
elif self.labels_[j] == 0:
self.labels_[j] = C
new_neighbors = self.get_neighbors(X, j)
if len(new_neighbors) >= self.min_samples:
neighbors = np.concatenate((neighbors, new_neighbors))
```
该代码实现了DBSCAN算法的核心逻辑,其中`fit`函数是算法的主要实现部分。在该函数中,首先初始化所有样本点的标签为0,然后遍历每一个样本点。对于每个未被访问过的点,找到与其距离小于等于eps的邻居,如果邻居数量小于min_samples,则将该点标记为噪声点;否则,将该点标记为第C个簇的一个点,并将该点的邻居加入到簇中,并继续向外扩展簇。在扩展簇时,同样需要考虑邻居是否已被访问过或已被归到某个簇中。
阅读全文