自适应高斯牛顿法优化
时间: 2023-09-06 07:07:19 浏览: 165
自适应高斯牛顿法是一种优化方法,用于在最小二乘问题中寻找最优解。这种方法基于高斯牛顿法,而高斯牛顿法是一种近似海森矩阵的方法。在自适应高斯牛顿法中,我们根据当前的误差来动态调整海森矩阵的估计值,以更好地逼近最优解。具体来说,我们使用最小二乘法中的均方误差(MSE)来衡量当前估计值与真实值之间的差距,并根据这个差距来调整海森矩阵的估计。这样做的目的是在迭代过程中更准确地逼近最优解,从而提高优化的效果。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [最小二乘法——梯度下降法,牛顿法,高斯牛顿法](https://blog.csdn.net/weixin_43175007/article/details/106164569)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [线性优化方法,一阶二阶梯度法,高斯牛顿法,列文伯特-马夸尔特法](https://blog.csdn.net/qq91752728/article/details/79814431)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [高斯求积代码matlab-Matlab-code-samples:Matlab代码样本](https://download.csdn.net/download/weixin_38621312/19003565)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文