bcd求解lasso

时间: 2023-10-03 21:00:41 浏览: 43
Lasso(Least Absolute Shrinkage and Selection Operator)是一种常用于特征选择和稀疏回归的统计方法。它可以通过在代价函数中加一个L1范数惩罚项来实现特征的稀疏性。 在回归问题中,我们希望找到一个线性模型y = Xw,其中y是目标变量,X是自变量矩阵,w是模型的参数。通常情况下,我们会尝试最小化平方误差代价函数,即最小化残差平方和。 而在Lasso回归中,我们在平方误差代价函数的基础上,加入了对模型参数的L1范数惩罚,即最小化残差平方和加上模型参数绝对值之和。这个L1范数惩罚项使得最优解w具有稀疏性,即部分参数会被约束为0,从而实现特征选择的效果。 具体的优化问题可以表示为最小化残差平方和加上L1范数乘以一个超参数λ,即min(||y - Xw||^2 + λ||w||_1)。这个问题可以通过迭代的方式求解,最常用的方法是坐标下降法。 坐标下降法的思想是,每次只优化一个参数,对其他参数保持不变。然后在每次迭代中,更新该参数,直到收敛。具体地,我们可以通过最小化一个关于待更新参数的子代价函数来更新参数值,通过迭代所有参数,反复更新直到收敛为止。 最终的模型参数是稀疏的,只有部分参数非零,这种稀疏性使得Lasso在特征选择问题中非常有用。在大规模数据集上使用Lasso时,可以使用并行计算或者加速的坐标下降法来提高计算效率。
相关问题

使用sedumi求解lasso

SEDUMI是一个用于求解半定规划和二次规划问题的MATLAB工具箱。而Lasso是一种常用的回归方法,用于在具有大量特征的数据集上进行特征选择和变量稀疏化。 为了使用SEDUMI求解Lasso问题,首先需要将Lasso问题转化为二次规划问题的标准形式。Lasso问题的标准形式可以表示为以下最小化问题: minimize (1/2) *||Ax - b||^2 + λ *||x||_1 其中,A是一个数据矩阵,x是待求解的权重向量,b是目标变量向量,λ是正则化参数。 为了使用SEDUMI求解该问题,我们需要将目标函数和约束条件转化为二次规划问题的标准形式。具体而言,我们将目标函数展开为二次项和线性项,将约束条件转化为等式和不等式约束。 然后,我们可以使用SEDUMI的solve函数来求解转化后的二次规划问题。该函数会返回求解得到的最优权重向量x的值。 总结起来,使用SEDUMI求解Lasso问题的步骤如下: 1. 将Lasso问题转化为二次规划问题的标准形式。 2. 使用SEDUMI的solve函数求解转化后的二次规划问题。 3. 获取求解得到的最优权重向量x的值。 需要注意的是,对于非常大的数据集,使用SEDUMI求解Lasso问题可能会面临计算时间较长和内存消耗较大的挑战。在这种情况下,可以考虑使用其他的Lasso求解方法,如坐标下降法或子梯度法。

PDHG求解lasso问题

PDHG(Primal-Dual Hybrid Gradient)是求解Lasso问题的一种有效方法。Lasso问题可以表示为: minimize || Ax - b ||^2 + λ || x ||_1 其中,A为一个m×n的矩阵,b为一个m维向量,λ为一个正常数,||x||_1表示x的L1范数。 PDHG算法的基本思路是将Lasso问题转化为一个等价的凸优化问题,然后使用一种称为primal-dual的方法来求解该问题。具体来说,该算法通过构造一个拉格朗日函数,并使用ADMM(Alternating Direction Method of Multipliers)算法来求解该拉格朗日函数的对偶问题。 PDHG算法的具体实现步骤如下: 1. 初始化变量x、y和z,其中x为Lasso问题的解,y和z为辅助变量。 2. 迭代执行以下步骤直到收敛: a. 更新x:x = x - τ A^T(y - z)。 b. 更新y:y = Sλ/τ(x + τA(z - Ax)),其中Sλ/τ表示软阈值函数。 c. 更新z:z = z + σ(Ax - y)。 其中,τ和σ为步长参数,一般需要经过调整来保证算法的收敛性。 PDHG算法的优点是收敛速度快、实现简单、对大规模问题的求解能力强,因此在许多实际应用中得到了广泛的应用。

相关推荐

最新推荐

recommend-type

regression shrinkage and selection via the lasso.pdf

《回归收缩与Lasso方法》 这篇论文由Robert Tibshirani在1996年发表,探讨了一种新的线性模型估计方法——Lasso(Least Absolute Shrinkage and Selection Operator)。Lasso方法的主要目标是在保持残差平方和尽...
recommend-type

lasso-logistic程序示例.docx

Lasso-Logistic 回归模型在分析居民对传统小吃爱好程度的影响因素中的应用 本文通过利用 R 语言建立了 Lasso-Logistic 模型,研究了影响居民对传统小吃爱好程度的因素。该模型使用了 606 条观测数据,考察了 16 个...
recommend-type

稀疏编码公式推导:LASSO,ISTA,近端梯度优化,软阈值

在LASSO的优化过程中,迭代软阈值算法(ISTA)是一种常用的求解方法。它基于梯度下降策略,但每次迭代时都会应用软阈值函数,将参数向量的每个元素减去梯度的步长后再进行阈值处理,保留重要的特征,弱化或消除不...
recommend-type

卫星网络容器仿真平台+TC流量控制+SRS&ffmpeg推流.zip

卫星网络容器仿真平台+TC流量控制+SRS&ffmpeg推流
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依