写一段能解决文件中数学模型问题的lingo代码
时间: 2024-09-09 11:15:16 浏览: 53
以下是一段基于文件描述的数学模型设计的LINGO示例代码框架,旨在实现最小化运输成本及固定费用的目标:
```lingo
models:
sets:
TRUCKS /1,2...J/: l, w, h, v, m;
GOODS /1,2...n/: li, wi, hi, vi, mi, x, y, z, xp, yp, zp;
POINTS /0,1,2...n/;
CUSTOMERS /1,2...n/;
endsets
!定义二进制变量;
binary pij(i,j);
binary uj(j);
binary route(k,i,j);
binary service(k,j);
!目标是最小化总的运输和固定成本;
min = sum[k in TRUCKS](cost_per_unit_distance(k) * total_distance(k) + fixed_cost(k));
!定义容量和体积限制;
subject to {
weight_limit(j): sum[i](mi * pij(i,j)) <= m(j) forall j;
volume_limit(j): sum[i](vi * pij(i,j)) <= v(j) forall j;
!确保每个货物被装载并正确定位;
load_goods(i): sum[j](pij(i,j)) == 1 forall i;
!确保货物在车厢内并且稳定;
within_truck_bounds(i,j): x(i) >= 0 and x(i) + li(i) <= l(j),
y(i) >= 0 and y(i) + wi(i) <= w(j),
z(i) >= 0 and z(i) + hi(i) <= h(j) forall i,j where pij(i,j)=1;
stability_constraint(i,j): gzi(i) <= gz(i) + R*(2 - pij(i,j) - pij(f,j)) + R*(1-b) forall i,j,f where vi > vf and pij(i,j)=1;
heavy_on_light(i,j): gzi(i) <= gz(i) + R*(2 - pij(i,j) - pij(f,j)) + R*(1-c) forall i,j,f where mi > mf and pij(i,j)=1;
closed_route(k): sum[i](route(k,0,i)) = 1 and sum[j](route(k,j,0)) = 1 forall k;
one_vehicle_service(i,k): sum[j](route(k,i,j)) + sum[j](route(k,j,i)) <= 2*service(k,i) forall k, i in CUSTOMERS;
exclusive_service(i): sum[k](service(k,i)) = 1 forall i in CUSTOMERS;
}
data section starts
J = ...; n = ...; cost_per_unit_distance = [...]; fixed_cost = [...];
!其他数据输入...
data section ends
end
```
注意,这个代码只是一个简化版的例子。实际应用中可能还需要根据具体问题调整参数设置以及进一步细化模型。此外,在`data section`部分应该填写具体的数值或者通过外部文件导入具体的数据来代替这里的省略号。例如,`J` 和 `n` 的具体值应依据实际情况指定,而`cost_per_unit_distance`等向量也应当填入相应的数值。
阅读全文