resnet18 tensorflow
时间: 2023-12-04 19:40:59 浏览: 82
tensorflow-1.8.0
4星 · 用户满意度95%
以下是使用TensorFlow 2.0实现resnet18的示例代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, Add, Input, MaxPooling2D, ZeroPadding2D, Dense, Flatten
from tensorflow.keras.models import Model
def conv_bn_relu(inputs, filters, kernel_size, strides):
x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
return x
def identity_block(inputs, filters):
x = conv_bn_relu(inputs, filters, kernel_size=3, strides=1)
x = conv_bn_relu(x, filters, kernel_size=3, strides=1)
x = Add()([x, inputs])
x = Activation('relu')(x)
return x
def conv_block(inputs, filters, strides):
shortcut = inputs
x = conv_bn_relu(inputs, filters, kernel_size=3, strides=strides)
x = conv_bn_relu(x, filters, kernel_size=3, strides=1)
shortcut = Conv2D(filters=filters, kernel_size=1, strides=strides)(shortcut)
shortcut = BatchNormalization()(shortcut)
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
def resnet18():
inputs = Input(shape=(224, 224, 3))
x = ZeroPadding2D(padding=(3, 3))(inputs)
x = Conv2D(filters=64, kernel_size=7, strides=2)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
x = conv_block(x, filters=64, strides=1)
x = identity_block(x, filters=64)
x = identity_block(x, filters=64)
x = conv_block(x, filters=128, strides=2)
x = identity_block(x, filters=128)
x = identity_block(x, filters=128)
x = conv_block(x, filters=256, strides=2)
x = identity_block(x, filters=256)
x = identity_block(x, filters=256)
x = conv_block(x, filters=512, strides=2)
x = identity_block(x, filters=512)
x = identity_block(x, filters=512)
x = Flatten()(x)
x = Dense(units=1000, activation='softmax')(x)
model = Model(inputs=inputs, outputs=x)
return model
```
这里定义了一些辅助函数,如conv_bn_relu、identity_block和conv_block,用于构建ResNet18的基本块。然后,定义了resnet18函数,该函数返回一个ResNet18模型。在这个函数中,我们首先定义了输入层,然后进行了一些预处理,接着构建了ResNet18的各个块,并在最后添加了一个全连接层,输出1000个类别的概率分布。
阅读全文