resnet18代码tensorflow
时间: 2023-08-29 19:10:07 浏览: 89
ResNet的TensorFlow实现
5星 · 资源好评率100%
以下是使用 TensorFlow 实现 ResNet-18 的示例代码:
```python
import tensorflow as tf
def conv_block(inputs, filters, kernel_size, strides, padding='same', activation=True):
x = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding)(inputs)
x = tf.keras.layers.BatchNormalization()(x)
if activation:
x = tf.keras.layers.ReLU()(x)
return x
def identity_block(inputs, filters, kernel_size):
x = conv_block(inputs, filters=filters, kernel_size=kernel_size, strides=1)
x = conv_block(x, filters=filters, kernel_size=kernel_size, strides=1, activation=False)
x = tf.keras.layers.add([x, inputs])
x = tf.keras.layers.ReLU()(x)
return x
def resnet18(input_shape=(224, 224, 3), num_classes=1000):
inputs = tf.keras.Input(shape=input_shape)
# stage 1
x = conv_block(inputs, filters=64, kernel_size=7, strides=2)
# stage 2
x = tf.keras.layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
x = identity_block(x, filters=64, kernel_size=3)
x = identity_block(x, filters=64, kernel_size=3)
# stage 3
x = tf.keras.layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
x = identity_block(x, filters=128, kernel_size=3)
x = identity_block(x, filters=128, kernel_size=3)
# stage 4
x = tf.keras.layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
x = identity_block(x, filters=256, kernel_size=3)
x = identity_block(x, filters=256, kernel_size=3)
# stage 5
x = tf.keras.layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
x = identity_block(x, filters=512, kernel_size=3)
x = identity_block(x, filters=512, kernel_size=3)
# final stage
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Dense(num_classes, activation='softmax')(x)
return tf.keras.Model(inputs=inputs, outputs=x)
```
在此示例中,我们定义了三个辅助函数:
- `conv_block`:实现卷积层、批量归一化和 ReLU 激活函数。
- `identity_block`:实现 ResNet 的恒等块。
- `resnet18`:实现 ResNet-18 模型,它由一个卷积层、4 个恒等块和一个全局平均池化层组成。
在 `resnet18` 函数中,我们首先定义输入层,然后添加一个卷积层和批量归一化层。接下来,我们按照 ResNet 的结构,添加 4 个恒等块。最后,我们添加一个全局平均池化层和一个输出层,以便对输入进行分类。
您可以使用以下代码来编译和训练模型:
```python
model = resnet18()
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_dataset, epochs=10, validation_data=val_dataset)
```
请注意,我们使用 `categorical_crossentropy` 作为损失函数,因为我们的目标是多类别分类。您可以根据您的需求更改此设置。
阅读全文