resnet18代码复现tensorflow
时间: 2023-11-20 11:57:37 浏览: 92
以下是使用TensorFlow复现ResNet18的代码示例:
```python
import tensorflow as tf
def conv_block(inputs, filters, kernel_size, strides):
x = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
return x
def identity_block(inputs, filters):
x = conv_block(inputs, filters=filters, kernel_size=3, strides=1)
x = tf.keras.layers.Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.add([x, inputs])
x = tf.keras.layers.ReLU()(x)
return x
def resnet18(input_shape=(224, 224, 3), num_classes=1000):
inputs = tf.keras.layers.Input(shape=input_shape)
x = conv_block(inputs, filters=64, kernel_size=7, strides=2)
x = tf.keras.layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
for i in range(2):
x = identity_block(x, filters=64)
x = conv_block(x, filters=128, kernel_size=3, strides=2)
for i in range(2):
x = identity_block(x, filters=128)
x = conv_block(x, filters=256, kernel_size=3, strides=2)
for i in range(2):
x = identity_block(x, filters=256)
x = conv_block(x, filters=512, kernel_size=3, strides=2)
for i in range(2):
x = identity_block(x, filters=512)
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Dense(units=num_classes, activation='softmax')(x)
model = tf.keras.models.Model(inputs=inputs, outputs=x)
return model
```
阅读全文