tensorflow 1D resnet18 代码
时间: 2023-10-01 08:11:23 浏览: 92
抱歉,ResNet-18 是一个用于图像分类的经典网络结构,通常用于处理二维图像数据。它不适用于一维数据(如时间序列或信号数据)。如果你想使用 ResNet-18 处理一维数据,你可以将输入数据扩展为二维数据输入网络。下面是一个使用 TensorFlow 实现的示例代码:
```python
import tensorflow as tf
def resnet_block(inputs, filters, kernel_size, strides):
x = tf.keras.layers.Conv1D(filters, kernel_size, strides=strides, padding='same')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
x = tf.keras.layers.Conv1D(filters, kernel_size, padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
if strides > 1:
shortcut = tf.keras.layers.Conv1D(filters, 1, strides=strides, padding='same')(inputs)
shortcut = tf.keras.layers.BatchNormalization()(shortcut)
else:
shortcut = inputs
x = tf.keras.layers.Add()([x, shortcut])
x = tf.keras.layers.ReLU()(x)
return x
def create_resnet18(input_shape, num_classes):
inputs = tf.keras.layers.Input(shape=input_shape)
x = tf.keras.layers.Conv1D(64, 7, strides=2, padding='same')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
x = tf.keras.layers.MaxPooling1D(3, strides=2, padding='same')(x)
x = resnet_block(x, 64, 3, strides=1)
x = resnet_block(x, 64, 3, strides=1)
x = resnet_block(x, 128, 3, strides=2)
x = resnet_block(x, 128, 3, strides=1)
x = resnet_block(x, 256, 3, strides=2)
x = resnet_block(x, 256, 3, strides=1)
x = resnet_block(x, 512, 3, strides=2)
x = resnet_block(x, 512, 3, strides=1)
x = tf.keras.layers.GlobalAveragePooling1D()(x)
outputs = tf.keras.layers.Dense(num_classes, activation='softmax')(x)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
return model
# 定义输入形状和类别数
input_shape = (100, 1) # 这里假设输入是长度为100的一维信号数据
num_classes = 10
# 创建ResNet-18模型
model = create_resnet18(input_shape, num_classes)
# 打印模型结构
model.summary()
```
请确保你已经导入了 TensorFlow 库,并且安装了对应的版本。你可以根据自己的需要进行修改和调整。
阅读全文