深度残差网络和分位数回归结合起来的区间预测代码
时间: 2023-08-12 07:08:49 浏览: 173
这里是一个基于深度残差网络和分位数回归结合的区间预测代码。请注意,这只是一个示例代码,具体实现可能因数据集和模型结构而异。
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Dropout, Flatten, Conv1D, Add, Lambda
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
# 构建深度残差网络
def resnet_block(x, filters, kernel_size, activation='relu', dropout_rate=0.2):
# 残差路径
res = Conv1D(filters=filters, kernel_size=kernel_size, padding='same')(x)
res = Dropout(dropout_rate)(res)
res = Conv1D(filters=filters, kernel_size=kernel_size, padding='same')(res)
# 主路径
x = Conv1D(filters=filters, kernel_size=kernel_size, padding='same')(x)
x = Dropout(dropout_rate)(x)
x = Conv1D(filters=filters, kernel_size=kernel_size, padding='same')(x)
# 合并残差路径和主路径
x = Add()([res, x])
x = Activation(activation)(x)
return x
def build_resnet(input_shape, output_shape, filters, kernel_size, activation='relu', dropout_rate=0.2):
# 输入层
inputs = Input(shape=input_shape)
# 残差块
x = resnet_block(inputs, filters, kernel_size, activation, dropout_rate)
x = resnet_block(x, filters, kernel_size, activation, dropout_rate)
x = resnet_block(x, filters, kernel_size, activation, dropout_rate)
# 输出层
outputs = Dense(output_shape, activation='linear')(x)
# 模型
model = Model(inputs=inputs, outputs=outputs)
return model
# 构建分位数回归模型
def build_quantile_loss(q):
def quantile_loss(y_true, y_pred):
error = y_true - y_pred
return tf.keras.backend.mean(tf.keras.backend.maximum(q * error, (q - 1) * error), axis=-1)
return quantile_loss
def build_quantile_model(input_shape, output_shape, filters, kernel_size, activation='relu', dropout_rate=0.2, quantiles=[0.1, 0.5, 0.9]):
# 初始化模型列表
models = []
# 构建多个分位数回归模型
for q in quantiles:
model = build_resnet(input_shape, output_shape, filters, kernel_size, activation, dropout_rate)
model.compile(loss=build_quantile_loss(q), optimizer=Adam())
models.append(model)
return models
# 训练模型
def train_model(X_train, y_train, models, batch_size=32, epochs=100):
# 训练每个分位数回归模型
for model in models:
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1, shuffle=True)
# 预测分位数
def predict_quantiles(X_test, models):
# 预测每个分位数
y_preds = []
for model in models:
y_preds.append(model.predict(X_test))
# 整理预测结果
y_preds = np.array(y_preds)
y_preds = np.transpose(y_preds, (1, 2, 0))
return y_preds
# 构建区间预测模型
def build_interval_model(input_shape, output_shape, filters, kernel_size, activation='relu', dropout_rate=0.2, quantiles=[0.1, 0.5, 0.9]):
# 构建多个分位数回归模型
models = build_quantile_model(input_shape, output_shape, filters, kernel_size, activation, dropout_rate, quantiles)
# 输入层
inputs = Input(shape=input_shape)
# 预测分位数
preds = predict_quantiles(inputs, models)
# 计算区间
lower = Lambda(lambda x: x[:, :, 0])(preds)
upper = Lambda(lambda x: x[:, :, -1])(preds)
# 输出层
outputs = tf.stack([lower, upper], axis=-1)
# 模型
model = Model(inputs=inputs, outputs=outputs)
return model
```
在这个代码中,`build_resnet`函数构建了一个深度残差网络模型,`build_quantile_model`函数构建了多个分位数回归模型,`train_model`函数用于训练模型,`predict_quantiles`函数用于预测分位数,`build_interval_model`函数将分位数回归模型和区间预测模型结合起来,构建了一个完整的区间预测模型。
阅读全文