AIS数据清洗 python

时间: 2023-08-17 14:16:01 浏览: 82
在Python中,可以使用pandas库来进行AIS数据清洗。其中,pandas.get_dummies()函数可以用于进行哑变量处理。该函数的参数包括data(要进行哑变量处理的数据)、prefix(哑变量的前缀,默认为None)、prefix_sep(哑变量前缀与原始列名之间的分隔符,默认为下划线)、dummy_na(是否为NaN值创建哑变量,默认为False)、columns(要进行哑变量处理的列,默认为None)、sparse(是否使用稀疏矩阵表示哑变量,默认为False)和drop_first(是否删除第一个哑变量,默认为False)\[1\]。 另外,还可以使用其他库进行数据清洗,比如使用matplotlib库进行箱型图分析和异常值处理。可以定义一个函数来识别和处理异常值,该函数可以计算出上界和下界,然后将超过上界的值设置为上界,低于下界的值设置为下界。可以使用quantile()函数来计算分位数,然后根据1.5倍的IQR(四分位距)来确定上界和下界。最后,可以使用loc\[\]函数来对异常值进行替换\[3\]。 综上所述,可以使用pandas库的get_dummies()函数进行哑变量处理,以及使用matplotlib库进行箱型图分析和异常值处理。 #### 引用[.reference_title] - *1* *3* [python大数据的数据清洗和准备(对缺失值的处理,对重复数据的处理,对异常值的处理,数据转换)](https://blog.csdn.net/qq_51269815/article/details/121502431)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [AIS数据压缩-改进的DP算法(Improved DP algorithm)](https://blog.csdn.net/John_zsz/article/details/127074531)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

### 回答1: AIS(Automatic Identification System)是一种基于无线电技术的自动识别系统,常用于航海领域的船舶定位和通信。使用Python进行AIS数据的可视化是一种常见且有效的方式。 要进行AIS数据的可视化,首先需要获取AIS数据。可以通过相关的API或者数据库来获得实时或历史AIS数据。在Python中,可以使用合适的库(如pandas)来处理和读取数据。 一旦获得AIS数据,接下来可以使用各种Python的可视化库,如matplotlib和seaborn,来创建图表和图形。下面是一些常用的AIS数据可视化方法: 1. 船舶位置可视化:使用地图库如basemap或者folium,可以将AIS数据中的船舶位置点绘制在地图上,以显示船舶在海洋中的实时位置。 2. 航线可视化:通过将船舶的历史位置点用线条连接起来,可以绘制出船舶的航线轨迹。这可以帮助分析船舶的移动模式和航线选择。 3. 船舶状态可视化:AIS数据中通常包含了船舶的速度、航向等信息。可以使用柱形图、折线图等方式将这些数据可视化,以便更好地理解和分析船舶的状态变化。 4. 船舶密度热力图:将AIS数据中的船舶位置点进行聚类,并使用热力图展示各个聚类区域的密度变化,可以帮助我们了解船舶活动的热点区域。 5. 船舶速度分布直方图:根据AIS数据中的船舶速度信息,可以创建直方图,以展示船舶速度的分布情况。这有助于了解船舶的运行状态和速度特征。 使用Python进行AIS数据的可视化可以帮助我们更好地理解和分析船舶的行为模式、流量分布以及异常情况。同时,Python具有丰富的数据处理和可视化库,使得我们可以轻松地实现对AIS数据的可视化分析。 ### 回答2: AIS数据是指船舶自动识别系统(Automatic Identification System)所产生的船舶信息数据。使用Python进行AIS数据的可视化可以帮助我们更好地理解和分析船舶活动、交通流量等情况。 要进行AIS数据可视化,首先需要获取AIS数据。可以通过各种途径获得,例如航运公司的数据提供商、船舶跟踪网站等。获取到AIS数据后,我们可以使用Python的数据处理库(例如Pandas)来读取和处理数据。 在数据处理阶段,我们可以对AIS数据进行筛选、清洗和预处理。例如,可以根据时间、地理位置等条件筛选出特定区域、特定时间段的数据。同时,我们还可以将AIS数据与其他地理信息数据(例如地图数据)进行整合,以便进行更全面的可视化分析。 接下来,我们可以使用Python的数据可视化库(例如Matplotlib、Seaborn)来进行AIS数据的可视化。常见的可视化方式包括散点图、折线图、热力图等。例如,我们可以使用散点图来展示船舶在不同时间和地理位置的分布情况,以及船舶的速度和航向等信息。同时,我们也可以使用折线图来展示船舶的轨迹和航线等。 此外,我们还可以进行更高级的可视化分析,例如基于AIS数据的航行路径规划、船舶活动热点分析等。这些分析可以帮助航运公司、港口管理机构等从AIS数据中获得更多有价值的信息,并支持相关决策的制定和优化。 总之,利用Python进行AIS数据的可视化可以帮助我们更好地理解和分析船舶活动情况。通过适当选择和应用数据处理和可视化工具,我们可以更直观地展示AIS数据的特征和规律,为相关行业和领域提供更好的决策支持。 ### 回答3: AIS数据(船舶自动识别系统)是一种用于船舶位置和运行状态的全球性信息系统。通过AIS数据,可以获取船舶的位置、航向、航速、船名等信息。将AIS数据进行可视化是一种将数据以图形化形式展示的方法,能够更直观地了解船舶的位置和运行状态。 Python是一种功能强大的编程语言,拥有丰富的数据处理和可视化库。在Python中,可以使用著名的数据处理库pandas来处理AIS数据。首先,我们可以使用pandas读取AIS数据,并对数据进行清洗和整理,剔除无效或重复的数据。 接着,可以使用Python的可视化库matplotlib对AIS数据进行可视化。使用matplotlib可以绘制折线图、散点图、热力图等多种图表,以直观地展示船舶的位置和运行状态。例如,可以通过绘制散点图来表示船舶在海上的分布情况,使用不同的颜色或大小来表示船舶的不同属性。 此外,还可以使用Python的地理信息处理库geopandas来将AIS数据与地理信息数据进行融合,实现更丰富的可视化效果。例如,可以将AIS数据与地图数据进行叠加,以在地图上显示船舶的位置和运行路径。 综上所述,通过使用Python进行AIS数据可视化,我们可以更直观地了解船舶的位置和运行状态。这不仅有助于海事监管和船舶管理,还可以提供有关船舶运输和航行安全的重要信息。
Python基于AIS数据的船舶轨迹修复方法研究代码可以包括以下几个方面的内容: 1. 数据预处理:首先需要加载AIS数据,并对数据进行预处理。可以使用Python中的pandas库或者numpy库来读取和处理数据,包括数据清洗、去重、数据类型转换等操作。 2. 轨迹分段:根据AIS数据中的船舶标识(MMSI)对数据进行分段,将同一个船舶的数据归为一组。可以使用Python中的groupby函数或者自定义函数来实现这一步骤。 3. 轨迹修复算法:根据船舶轨迹数据中的时间戳和位置信息,可以使用插值算法来对数据进行修复。常用的插值算法包括线性插值、样条插值等。可以使用Python中的scipy库或者numpy库中的插值函数来实现。 4. 轨迹可视化:修复完成后,可以使用Python中的matplotlib库或者其他可视化库将修复后的轨迹数据进行可视化展示。可以绘制轨迹线路图、轨迹点的散点图等。 5. 性能评估:修复完成后,可以对修复后的轨迹数据进行性能评估。可以计算修复前后的位置误差、轨迹长度等指标,评估修复算法的效果。 综上所述,Python基于AIS数据的船舶轨迹修复方法研究代码包括数据预处理、轨迹分段、轨迹修复算法、轨迹可视化和性能评估等步骤。通过这些步骤可以实现对AIS数据中的船舶轨迹进行修复和可视化展示,并对修复算法进行性能评估。
要使用 PyTorch 建立模型预测 AIS 数据轨迹,一般需要进行以下步骤: 1. 数据处理:将 AIS 数据进行清洗、处理和转换,使其能够被神经网络所接受。 2. 构建模型: 使用 PyTorch 构建神经网络模型,一般可以选择 LSTM、GRU 等适合序列数据处理的模型。 3. 模型训练:使用 AIS 数据训练模型,根据训练结果对模型进行调整。 4. 模型预测:使用模型进行 AIS 数据的预测,得出轨迹。 下面是一些代码示例,帮助你更好地理解如何使用 PyTorch 来预测 AIS 数据轨迹: python import torch import torch.nn as nn import torch.optim as optim # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.lstm = nn.LSTM(input_size=1, hidden_size=10, num_layers=1, batch_first=True) self.fc = nn.Linear(10, 1) def forward(self, x): out, _ = self.lstm(x) out = self.fc(out[:, -1, :]) return out # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # 训练模型 for epoch in range(100): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(trainloader))) # 预测轨迹 inputs = torch.Tensor(test_data).unsqueeze(0) outputs = net(inputs) trajectory = outputs.squeeze().data.numpy().tolist() 这是一个简单的 PyTorch 模型代码示例,实现了使用 LSTM 模型对 AIS 数据轨迹进行预测。需要注意的是,这只是一个示例,实际应用中需要根据具体需求进行调整。
基于Python的船舶航行AIS大数据爬取与分析涉及以下几个关键步骤: 1. 数据爬取:使用Python中的网络爬虫库,如BeautifulSoup或Scrapy,从船舶AIS相关的网站或API中获取数据。这些数据包括船舶的实时位置、速度、方向、航行状态等。 2. 数据清洗与预处理:对于获取的原始数据进行清洗和预处理,去除重复、缺失或无效的数据,并对数据进行格式转换、标准化和归一化处理,以方便后续的分析。 3. 数据存储与管理:将处理后的数据存储到适当的数据库管理系统(如MySQL或MongoDB)中,以便后续的查询与分析操作。使用Python的数据库访问库(如SQLAlchemy)来实现与数据库的交互。 4. 数据分析与可视化:使用Python的数据分析库(如Pandas、NumPy和SciPy)对航行AIS大数据进行统计分析和挖掘。通过计算平均速度、航行距离、船舶密度等指标,揭示船舶航行的规律和趋势。同时,基于Matplotlib或Seaborn等可视化库,绘制直方图、散点图、热力图等图表,对分析结果进行直观展示。 5. 数据挖掘与预测建模:通过数据挖掘技术,如聚类、分类、关联规则挖掘等,发现隐含在船舶AIS数据中的规律和关联性。利用机器学习算法,如决策树、支持向量机或神经网络,构建预测模型,实现对船舶航行状态、船舶碰撞风险等的预测和警报。 基于Python的船舶航行AIS大数据爬取与分析,可以帮助船舶管理者、海事监管部门等了解船舶运行情况、监测船舶安全、优化船舶路线等,为船舶运营和海上安全提供有力支持。

最新推荐

torch_cluster-1.6.0-cp38-cp38-win_amd64.whl.zip

需要配和指定版本torch-1.10.1+cpu使用,请在安装该模块前提前安装torch-1.10.1+cpu,无需安装cuda

获取的肯德基第一页源代码

获取的肯德基第一页源代码

C语言程序来实现打印沙漏

打印沙漏c语言pta

torch_spline_conv-1.2.1-cp36-cp36m-linux_x86_64.whl.zip

需要配和指定版本torch-1.10.1+cu102使用,请在安装该模块前提前安装torch-1.10.1+cu102对应cuda10.2和cudnn,主要电脑需要有nvidia显卡才行

Matlab语音信号处理 毕业设计论文说明书 共84页.pdf

Matlab语音信号处理 毕业设计论文说明书 共84页.pdf

哈希排序等相关算法知识

哈希排序等相关算法知识

混合神经编码调制的设计和训练方法

可在www.sciencedirect.com在线获取ScienceDirectICTExpress 8(2022)25www.elsevier.com/locate/icte混合神经编码调制:设计和训练方法Sung Hoon Lima,Jiyong Hana,Wonjong Noha,Yujae Songb,Sang-WoonJeonc,a大韩民国春川,翰林大学软件学院b韩国龟尾国立技术学院计算机软件工程系,邮编39177c大韩民国安山汉阳大学电子电气工程系接收日期:2021年9月30日;接收日期:2021年12月31日;接受日期:2022年1月30日2022年2月9日在线发布摘要提出了一种由内码和外码组成的混合编码调制方案。外码可以是任何标准的二进制具有有效软解码能力的线性码(例如,低密度奇偶校验(LDPC)码)。内部代码使用深度神经网络(DNN)设计,该深度神经网络获取信道编码比特并输出调制符号。为了训练DNN,我们建议使用损失函数,它是受广义互信息的启发。所得到的星座图被示出优于具有5G标准LDPC码的调制�

利用Pandas库进行数据分析与操作

# 1. 引言 ## 1.1 数据分析的重要性 数据分析在当今信息时代扮演着至关重要的角色。随着信息技术的快速发展和互联网的普及,数据量呈爆炸性增长,如何从海量的数据中提取有价值的信息并进行合理的分析,已成为企业和研究机构的一项重要任务。数据分析不仅可以帮助我们理解数据背后的趋势和规律,还可以为决策提供支持,推动业务发展。 ## 1.2 Pandas库简介 Pandas是Python编程语言中一个强大的数据分析工具库。它提供了高效的数据结构和数据分析功能,为数据处理和数据操作提供强大的支持。Pandas库是基于NumPy库开发的,可以与NumPy、Matplotlib等库结合使用,为数

帮我用C++和Qt写一个m*n的矩阵最小路径和可视化,要求用格子展示,最小路径采用其它的颜色标记

好的,以下是一个基本的实现: 1. 首先需要定义一个矩阵类来存储矩阵数据和计算最小路径和。 ```c++ class Matrix{ public: Matrix(int rows, int cols); ~Matrix(); void setValue(int i, int j, int value); //设置元素的值 int getValue(int i, int j); //获取元素的值 int getRows(); //获取行数 int getCols(); //获取列数 int getMinPathSum(); //获取最

基于android的视频播放器的设计与实现--大学毕业论文.doc

基于android的视频播放器的设计与实现--大学毕业论文.doc