Transformer解码器
时间: 2023-12-13 16:33:01 浏览: 101
Transformer解码器是Transformer模型的一部分,用于将编码器生成的特征向量转换为目标语言的句子。与编码器类似,解码器也由多个层组成,每个层都有多头自注意力机制和前馈神经网络。解码器的输入是编码器的输出和目标语言的嵌入向量,输出是目标语言的单词序列。解码器的每个层都会生成一个输出,这些输出将被馈送到下一层,直到生成完整的目标语言句子。
以下是一个简单的Transformer解码器的Python实现:
```python
import torch
import torch.nn as nn
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward, dropout=0.1):
super(TransformerDecoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None):
tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(torch.relu(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
```
阅读全文