pytorch实现bp神经网络预测波士顿房价
时间: 2023-10-19 22:09:24 浏览: 139
基于pytorch前馈神经网络进行波士顿房价预测python源码+文档说明+博客介绍+数据集+效果演示
5星 · 资源好评率100%
要实现bp神经网络预测波士顿房价,可以按照以下步骤进行:
1. 导入数据集并进行预处理,包括数据归一化、划分训练集和测试集等操作。
2. 定义神经网络模型,包括输入层、隐藏层和输出层,并选择合适的激活函数和损失函数。
3. 使用反向传播算法进行模型训练,并设置合适的学习率、迭代次数等参数。
4. 对模型进行评估,包括计算损失函数值、预测结果与真实值的比较等操作。
以下是一个简单的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
# 导入数据集并进行预处理
boston = load_boston()
X = boston.data
y = boston.target
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(13, 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 1)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# 训练模型
for epoch in range(1000):
inputs = torch.autograd.Variable(torch.Tensor(X_train).float())
labels = torch.autograd.Variable(torch.Tensor(y_train).float())
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print('Epoch {}, Loss: {:.4f}'.format(epoch, loss.item()))
# 评估模型
with torch.no_grad():
inputs = torch.autograd.Variable(torch.Tensor(X_test).float())
labels = torch.autograd.Variable(torch.Tensor(y_test).float())
outputs = net(inputs)
loss = criterion(outputs, labels)
print('Test Loss: {:.4f}'.format(loss.item()))
```
阅读全文