MOEA-DVA python代码
时间: 2023-12-15 12:30:56 浏览: 156
moea/d算法代码
MOEA-DVA是一种多目标优化算法,它基于向量评分函数和动态变异策略,可以用于解决多目标优化问题。以下是一个Python实现的MOEA-DVA算法的代码示例:
```python
import numpy as np
def moea_dva(pop_size, num_obj, num_var, max_gen, f, g, xl, xu):
# 初始化种群
pop = np.random.rand(pop_size, num_var) * (xu - xl) + xl
# 初始化权重向量
w = np.random.rand(pop_size, num_obj)
w = w / np.tile(np.sum(w, axis=1)[:, None], (1, num_obj))
# 初始化参考点
z = np.min(f(pop), axis=0)
# 开始迭代
for gen in range(max_gen):
# 计算适应度
fit = np.sum(w * (f(pop) - z), axis=1)
# 计算变异概率
p = np.exp(-fit)
p = p / np.sum(p)
# 选择父代
idx = np.random.choice(pop_size, 2, p=p)
p1 = pop[idx[0], :]
p2 = pop[idx[1], :]
# 变异
beta = 0.5 * (1 + 2 * np.random.rand(num_var))
beta[beta > 1] = 2 - beta[beta > 1]
beta[beta < 0] = 0
c1 = 0.5 * ((1 + beta) * p1 + (1 - beta) * p2)
c2 = 0.5 * ((1 - beta) * p1 + (1 + beta) * p2)
# 交叉
cr = 0.5 * (1 + np.random.rand(num_var))
cr[cr > 1] = 2 - cr[cr > 1]
cr[cr < 0] = 0
c = np.zeros((2, num_var))
c[0, :] = cr * c1 + (1 - cr) * c2
c[1, :] = (1 - cr) * c1 + cr * c2
# 修剪
c[c < xl] = xl[c < xl]
c[c > xu] = xu[c > xu]
# 更新参考点
z = np.min(np.vstack((z, f(c))), axis=0)
# 更新种群
pop = np.vstack((pop, c))
w = np.vstack((w, np.random.rand(2, num_obj)))
w = w / np.tile(np.sum(w, axis=1)[:, None], (1, num_obj))
idx = np.argsort(np.sum(w, axis=0))
pop = pop[idx[:pop_size], :]
w = w[idx[:pop_size], :]
# 返回最终种群
return pop
```
其中,pop_size是种群大小,num_obj是目标函数个数,num_var是决策变量个数,max_gen是最大迭代次数,f是目标函数,g是约束函数,xl和xu是决策变量的上下界。
阅读全文