优化这段代码train_aucs=[] test_aucs=[]#train_aucs和test_aucs用来存储每次训练和测试的AUC值,AUC是一种常用的二分类模型性能评估指标 train_scores=[] test_scores=[]#train_scores和test_scores则是用来存储每次训练和测试的得分 loopn=5 #number of repetition while splitting train/test dataset with different random state. np.random.seed(10)#设置随机数生成器的种子,确保每次运行时生成的随机数一致。 random_states=np.random.choice(range(101), loopn, replace=False)#np.random.choice()用于从给定的范围内选择指定数量的随机数,range设置范围,loopn表示选择的随机数的数量,replace=False表示选择的随机数不可重复 scoring='f1'#设置性能指标 pca_comp=[]#设置空列表,储主成分分析(PCA)的组件 for i in range(loopn): train_X,test_X, train_y, test_y ,indices_train,indices_test= train_test_split(train, #通过train_test_split函数将数据集划分为训练集(train_X, train_y)和测试集(test_X, test_y),indices_train和indices_test返回索引 target,indices, test_size = 0.3,#数据集的70%,测试集占30% stratify=target, random_state=random_states[i]#随机状态(random_states[i])添加到random_states列表中 ) print("train_x.shpae:") print(train_X.shape) standardScaler = StandardScaler() standardScaler.fit(train_X) X_standard = standardScaler.transform(train_X) X_standard_test = standardScaler.transform(test_X) #calculate max n_components estimator = PCA(n_components=0.99,random_state=42) pca_X_train = estimator.fit_transform(X_standard) n_components=range(10,min(pca_X_train.shape),10) print(n_components) best_pca_train_aucs=[] best_pca_test_aucs=[] best_pca_train_scores=[] best_pca_test_scores=[]
时间: 2024-04-14 20:26:21 浏览: 102
下面是对代码进行优化的一些建议:
1. 使用列表推导式来简化train_aucs、test_aucs、train_scores和test_scores的初始化过程:
```python
train_aucs, test_aucs, train_scores, test_scores = [], [], [], []
```
2. 将循环次数和随机状态数量作为变量,使得代码更具可读性和可维护性:
```python
num_repetitions = 5
random_states = np.random.choice(range(101), num_repetitions, replace=False)
```
3. 使用enumerate函数来遍历循环中的索引和元素,消除对indices_train和indices_test的显式赋值:
```python
for i, random_state in enumerate(random_states):
train_X, test_X, train_y, test_y, _, _ = train_test_split(train, target, indices,
test_size=0.3,
stratify=target,
random_state=random_state)
# 其他代码...
```
4. 将数据标准化和PCA拟合与转换的过程合并为一步,减少冗余代码:
```python
standardScaler = StandardScaler()
X_standard = standardScaler.fit_transform(train_X)
X_standard_test = standardScaler.transform(test_X)
estimator = PCA(n_components=0.99, random_state=42)
pca_X_train = estimator.fit_transform(X_standard)
n_components = range(10, min(pca_X_train.shape), 10)
```
5. 使用空列表初始化变量的过程可以简化为一行代码:
```python
best_pca_train_aucs, best_pca_test_aucs, best_pca_train_scores, best_pca_test_scores = [], [], [], []
```
通过以上优化,可以使代码更加简洁和可读。请根据你的实际需要进行调整和修改。
阅读全文