mann - kendall代码
时间: 2023-11-01 21:03:14 浏览: 83
Mann-Kendall是一种用于检测时间序列趋势的非参数统计方法。其基本思想是比较相邻两个时间点的观测值大小,以确定序列中是否存在上升、下降或平稳的趋势。
Mann-Kendall检验的关键步骤如下:
1. 首先,我们需要准备一个时间序列数据集。这个数据集可以包含数值、日期和时间信息。
2. 然后,我们对数据进行排序,从而得到一个有序的数据序列。
3. 接下来,我们计算所有观测值对的差异,并确定它们的符号。这将帮助我们判断相邻两个时间点之间的趋势方向。
4. 接着,对于每个观测值对,我们统计两个方向(正向和负向)的差异数目。这将用于计算Mann-Kendall检验的统计量。
5. 最后,我们通过计算Mann-Kendall统计量的值和对应的p值,来判断时间序列是否存在趋势。
Mann-Kendall代码的实现可以使用多种编程语言,比如Python、R或MATLAB。通常,可以使用统计分析库中提供的函数来计算Mann-Kendall检验。例如,在Python中,我们可以使用“scipy”库中的“mktest”函数来进行Mann-Kendall检验。
总结来说,Mann-Kendall代码用于检测时间序列数据中的趋势。通过使用有序的数据序列和计算差异的方式,我们可以得到Mann-Kendall检验的统计量和p值,从而判断时间序列的趋势情况。
相关问题
mann-kendall趋势检验完整代码
mann-kendall趋势检验是一种常见的非参数检验方法,用于分析时间序列数据的趋势性。以下是mann-kendall趋势检验的完整代码:
1. 导包
首先需要导入一些必要的包,包括numpy和scipy.stats。
import numpy as np
from scipy.stats import norm
2. 计算每个元素的等级
在进行mann-kendall趋势检验之前,需要为每个元素计算等级。例如,对于一个长度为n的数组,最小值将被赋值为1,次小值将被赋值为2,以此类推。如果有相同的元素,则它们将被分配相同的等级,并且它们的平均等级将被用作它们的排名。
def compute_rank(x):
"""
Compute the rank for each element in x.
Parameters
----------
x : array-like
Input array.
Returns
-------
r : ndarray
An array of length x, holding the rank of each element.
"""
n = len(x)
r = np.empty(n)
for i, xi in enumerate(x):
smaller = 0
equal = 0
for j, xj in enumerate(x):
if xi < xj:
smaller += 1
elif xi == xj:
equal += 1
r[i] = smaller + (0.5 * equal) + 1
return r
3. 计算S值和Z值
计算S值和Z值是mann-kendall趋势检验的核心部分。S值表示样本中所有对(x[i], x[j]),其中i < j且x[i] < x[j]的符号函数(即如果x[j]比x[i]大,符号将是+1,否则为-1)的总和。Z值表示S值的标准化版本,为S值除以其标准误差。当Z值的绝对值大于一个阈值,例如1.96,就可以拒绝零假设,即该序列中不存在趋势性。计算S值和Z值的代码如下:
def mann_kendall(x, alpha=0.05):
"""
Compute the Mann-Kendall test for trend in x.
Parameters
----------
x : array-like
Input array.
alpha : float, optional
The significance level of the test. Default is 0.05.
Returns
-------
trend : str
The trend of the data. Can be "increasing", "decreasing", or "no trend".
h : bool
True if the null hypothesis is rejected, False otherwise.
p : float
The two-sided p-value of the test.
z : float
The standardized test statistic.
tau : float
The Kendall rank correlation coefficient.
slope : float
The slope of the linear regression line.
intercept : float
The intercept of the linear regression line.
"""
n = len(x)
r = compute_rank(x)
s = np.sign(np.subtract.outer(x, x)).sum() # Calculate S
tau = s / (n * (n - 1)) / 2 # Calculate Kendall's tau
var_s = n * (n - 1) * (2 * n + 5) / 18 # Calculate the variance of S
if s > 0:
z = (s - 1) / np.sqrt(var_s) # Calculate Z
elif s < 0:
z = (s + 1) / np.sqrt(var_s) # Calculate Z
else:
z = 0 # S is zero, so Z is zero as well
p = 2 * norm.sf(abs(z)) # Calculate the two-sided p-value
h = abs(z) > norm.ppf(1 - (alpha / 2)) # Test the null hypothesis
if tau < 0:
trend = "decreasing"
elif tau > 0:
trend = "increasing"
else:
trend = "no trend"
slope, intercept, _, _, _ = linregress(np.arange(n), x) # Calculate slope and intercept
return trend, h, p, z, tau, slope, intercept
现在你已经具备了对mann-kendall趋势检验的全面理解,可以根据需要使用以上代码进行使用和修改。
python中实现Mann-Kendall趋势检验代码
以下是Python中实现Mann-Kendall趋势检验的代码示例:
```python
import numpy as np
from scipy.stats import norm
def mann_kendall(x):
n = len(x)
s = np.zeros((n, n))
for i in range(n):
for j in range(i+1, n):
sgn = np.sign(x[j] - x[i])
s[i, j] = sgn
for k in range(i+1, j):
s[k, j] += sgn
sn = s.sum()
var_sn = n*(n-1)*(2*n+5)/18
if sn > 0:
z = (sn-1)/np.sqrt(var_sn)
elif sn == 0:
z = 0
else:
z = (sn+1)/np.sqrt(var_sn)
p = 2*(1-norm.cdf(abs(z)))
return z, p
```
该函数接受一维数组x作为输入,并返回Mann-Kendall趋势系数z和显著性水平p值。
阅读全文